IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1150-d1600240.html
   My bibliography  Save this article

An Informer Model for Very Short-Term Power Load Forecasting

Author

Listed:
  • Zhihe Yang

    (School of Electronic and Information Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Jiandun Li

    (School of Electronic and Information Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Haitao Wang

    (School of Electronic and Information Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Chang Liu

    (School of Electronic and Information Engineering, Shanghai Dianji University, Shanghai 201306, China)

Abstract

Facing the decarbonization trend in power systems, there appears to be a growing requirement on agile response and delicate supply from electricity suppliers. To accommodate this request, it is of key significance to precisely extrapolate the upcoming power load, which is well acknowledged as VSTLF, i.e., Very Short-Term Power Load Forecasting. As a time series forecasting problem, the primary challenge of VSTLF is how to identify potential factors and their very long-term affecting mechanisms in load demands. With the help of a public dataset, this paper first locates several intensely related attributes based on Pearson’s correlation coefficient and then proposes an adaptive Informer network with the probability sparse attention to model the long-sequence power loads. Additionally, it uses the Shapley Additive Explanations (SHAP) for ablation and interpretation analysis. The experiment results show that the proposed model outperforms several state-of-the-art solutions on several metrics, e.g., 18.39% on RMSE, 21.70% on MAE, 21.24% on MAPE, and 2.11% on R 2 .

Suggested Citation

  • Zhihe Yang & Jiandun Li & Haitao Wang & Chang Liu, 2025. "An Informer Model for Very Short-Term Power Load Forecasting," Energies, MDPI, vol. 18(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1150-:d:1600240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
    2. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    2. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Mingshen Xu & Wanli Liu & Shijie Wang & Jingjia Tian & Peng Wu & Congjiu Xie, 2024. "A 24-Step Short-Term Power Load Forecasting Model Utilizing KOA-BiTCN-BiGRU-Attentions," Energies, MDPI, vol. 17(18), pages 1-24, September.
    5. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    6. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
    8. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    9. Saidjon Shiralievich Tavarov & Alexander Sidorov & Zsolt Čonka & Murodbek Safaraliev & Pavel Matrenin & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty," Energies, MDPI, vol. 16(8), pages 1-18, April.
    10. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    11. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Ribeiro, Gabriel Trierweiler & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2023. "Cooperative ensemble learning model improves electric short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Song, Hui & Zhang, Boyu & Jalili, Mahdi & Yu, Xinghuo, 2025. "Multi-swarm multi-tasking ensemble learning for multi-energy demand prediction," Applied Energy, Elsevier, vol. 377(PC).
    13. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1150-:d:1600240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.