IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286593.html
   My bibliography  Save this article

A new trigonometric modification of the Weibull distribution: Control chart and applications in quality control

Author

Listed:
  • Mohammed Ahmed Alomair
  • Zubair Ahmad
  • Gadde Srinivasa Rao
  • Hazem Al-Mofleh
  • Saima Khan Khosa
  • Abdulaziz Saud Al Naim

Abstract

In the most recent era, the extensions of the probability models via trigonometry methods have received great attention. This paper also offers a novel trigonometric version of the Weibull model called a type-I cosine exponentiated Weibull (for short “TICE-Weibull”) distribution. The identifiability properties for all three parameters of the TICE-Weibull model are derived. The estimators of the TICE-Weibull model are derived by implementing the maximum likelihood approach. To demonstrate the effectiveness of the TICE-Weibull model, two applications from real-world phenomena are analyzed. In addition, the proposed statistical model is established for an attribute control chart based on a time-truncated life test. The advantage of the developed charts is examined based on the average run length (ARL). The necessary tables of shift sizes and various sample sizes are offered for numerous values of the distribution parameters, as well as specified ARL and shift constants. Some numerical examples are discussed for various scheme parameters to study the performance of the new TICE-Weibull attribute control charts. According to our search and a brief study of the statistical literature, there is no published work on the development of a control chart using new probability models that are introduced using the cosine function. This is the key motivation of this work, which fills this amazing and interesting research gap.

Suggested Citation

  • Mohammed Ahmed Alomair & Zubair Ahmad & Gadde Srinivasa Rao & Hazem Al-Mofleh & Saima Khan Khosa & Abdulaziz Saud Al Naim, 2023. "A new trigonometric modification of the Weibull distribution: Control chart and applications in quality control," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-27, July.
  • Handle: RePEc:plo:pone00:0286593
    DOI: 10.1371/journal.pone.0286593
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286593
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286593&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymkowiak, Magdalena & Iwińska, Maria, 2016. "Characterizations of Discrete Weibull related distributions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 41-48.
    2. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    3. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    4. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    5. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    6. Sulewski Piotr & Szymkowiak Magdalena, 2022. "The Weibull lifetime model with randomised failure-free time," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 59-76, December.
    7. Massimo Conti & Simone Orcioni, 2020. "Modeling of Failure Probability for Reliability and Component Reuse of Electric and Electronic Equipment," Energies, MDPI, vol. 13(11), pages 1-18, June.
    8. Abdoulaye Diamoutene & Farid Noureddine & Rachid Noureddine & Bernard Kamsu-Foguem & Diakarya Barro, 2020. "Proportional hazard model for cutting tool recovery in machining," Journal of Risk and Reliability, , vol. 234(2), pages 322-332, April.
    9. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    10. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    11. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    12. Achim Kampker & Heiner Hans Heimes & Christian Offermanns & Merlin Frank & Domenic Klohs & Khanh Nguyen, 2023. "Prediction of Battery Return Volumes for 3R: Remanufacturing, Reuse, and Recycling," Energies, MDPI, vol. 16(19), pages 1-22, September.
    13. Zeng, Hongtao & Lan, Tian & Chen, Qiming, 2016. "Five and four-parameter lifetime distributions for bathtub-shaped failure rate using Perks mortality equation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 307-315.
    14. Negreiros, Ana Cláudia Souza Vidal de & Lins, Isis Didier & Moura, Márcio José das Chagas & Droguett, Enrique López, 2020. "Reliability data analysis of systems in the wear-out phase using a (corrected) q-Exponential likelihood," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Baker, Rose, 2019. "New survival distributions that quantify the gain from eliminating flawed components," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 493-501.
    16. Örkcü, H. Hasan & Özsoy, Volkan Soner & Aksoy, Ertugrul & Dogan, Mustafa Isa, 2015. "Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 201-226.
    17. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Luis Carlos Méndez-González & Luis Alberto Rodríguez-Picón & Manuel Iván Rodríguez Borbón & Hansuk Sohn, 2023. "The Chen–Perks Distribution: Properties and Reliability Applications," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    19. Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Gauss M. Cordeiro & Elisângela C. Biazatti & Luís H. de Santana, 2023. "A New Extended Weibull Distribution with Application to Influenza and Hepatitis Data," Stats, MDPI, vol. 6(2), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.