IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0284747.html
   My bibliography  Save this article

Collaborative optimization for train stop planning and train timetabling on high-speed railways based on passenger demand

Author

Listed:
  • Yawei Li
  • Baoming Han
  • Peng Zhao
  • Ruixia Yang

Abstract

In recent years, with increasing passenger travel demand, high-speed railways have developed rapidly. The stop planning and timetabling problems are the core contents of high-speed railway transport planning and have important practical significance for improving efficiency of passenger travel and railway operation Dong et al. (2020). This study proposes a collaborative optimization approach that can be divided into two phases. In the first phase, a mixed-integer nonlinear programming model is constructed to obtain a stop plan by minimizing the total passenger travel time. The constraints of passenger origin-destination (OD) demand, train capacity, and stop frequency are considered in the first phase. In the second phase, the train timetable is optimized after the stop plan is obtained. A multiobjective mixed-integer linear optimization model is formulated by minimizing the total train travel time and the deviation between the expected and actual departure times from the origin station for all trains. Multiple types of trains and more refined headways are considered in the timetabling model. Finally, the approach is applied to China’s high-speed railway, and the GUROBI optimizer is used to solve the models in the above two stages. By analyzing the results, the total passenger travel time and train travel time decreased by 2.81% and 3.34% respectively. The proposed method generates a more efficient solution for the railway system.

Suggested Citation

  • Yawei Li & Baoming Han & Peng Zhao & Ruixia Yang, 2023. "Collaborative optimization for train stop planning and train timetabling on high-speed railways based on passenger demand," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
  • Handle: RePEc:plo:pone00:0284747
    DOI: 10.1371/journal.pone.0284747
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284747
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284747&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0284747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bussieck, Michael R. & Kreuzer, Peter & Zimmermann, Uwe T., 1997. "Optimal lines for railway systems," European Journal of Operational Research, Elsevier, vol. 96(1), pages 54-63, January.
    2. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    3. Huiling Fu & Lei Nie & Benjamin R. Sperry & Zhenhuan He, 2012. "Train Stop Scheduling in a High-Speed Rail Network by Utilizing a Two-Stage Approach," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-11, November.
    4. Jan-Willem Goossens & Stan van Hoesel & Leo Kroon, 2004. "A Branch-and-Cut Approach for Solving Railway Line-Planning Problems," Transportation Science, INFORMS, vol. 38(3), pages 379-393, August.
    5. Claessens, M. T. & van Dijk, N. M. & Zwaneveld, P. J., 1998. "Cost optimal allocation of rail passenger lines," European Journal of Operational Research, Elsevier, vol. 110(3), pages 474-489, November.
    6. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Yao, Zhiyuan & Nie, Lei & Fu, Huiling, 2024. "Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    3. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    4. Hamid, Faiz & Agarwal, Yogesh K., 2024. "Train stop scheduling problem: An exact approach using valid inequalities and polar duality," European Journal of Operational Research, Elsevier, vol. 313(1), pages 207-224.
    5. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    6. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.
    7. Hu, Huaibin & Yue, Yixiang & Fu, Huiling & Li, Jiaxi, 2024. "How to optimize train lines for diverse passenger demands: A line planning approach providing matched train services for each O-D market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    8. Jinfei Wu & Xinghua Shan & Jingxia Sun & Shengyuan Weng & Shuo Zhao, 2023. "Daily Line Planning Optimization for High-Speed Railway Lines," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    10. Schiewe, Alexander & Schiewe, Philine & Schmidt, Marie, 2019. "The line planning routing game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 560-573.
    11. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    12. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    13. Li, Shengdong & Zuo, Dajie & Li, Wenqing & Zhang, Yongxiang & Shi, Li, 2024. "Freight train line planning for large-scale high-speed rail network: An integer Benders decomposition-based branch-and-cut algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    14. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    15. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    16. Wenliang Zhou & Xiang Li & Xin Shi, 2023. "Joint Optimization of Time-Dependent Line Planning and Differential Pricing with Passenger Train Choice in High-Speed Railway Networks," Mathematics, MDPI, vol. 11(6), pages 1-28, March.
    17. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    18. Yan, Fei & Yao, Xiangming & Han, Mei & Zhao, Peng & Chen, Chao, 2025. "Multiperiod line planning coordinately of urban rail transit by considering inter-period rolling stock connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    19. Simon Bull & Jesper Larsen & Richard M. Lusby & Natalia J. Rezanova, 2019. "Optimising the travel time of a line plan," 4OR, Springer, vol. 17(3), pages 225-259, September.
    20. Peiwen Han & Lu Tong & Wenjun Li & Xin Zhang & Wuyang Yuan & Yu Ke, 2025. "Modeling the Holiday Line Planning Problem with Profitability and Homogeneity Under Passenger Flow Explosion Conditions in China—A Sustainable Perspective," Sustainability, MDPI, vol. 17(5), pages 1-35, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.