IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2193-d1604443.html
   My bibliography  Save this article

Modeling the Holiday Line Planning Problem with Profitability and Homogeneity Under Passenger Flow Explosion Conditions in China—A Sustainable Perspective

Author

Listed:
  • Peiwen Han

    (Institute of Transport Planning Research, China Railway Design Corporation, Tianjin 300308, China)

  • Lu Tong

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Wenjun Li

    (School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212100, China)

  • Xin Zhang

    (Transportation and Economics Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China)

  • Wuyang Yuan

    (School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China)

  • Yu Ke

    (School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract

In China, there is a significant surge and fluctuation in the passenger flow of high-speed railways during holidays, and the holiday line plan is made by adding weekend/peak lines to the workday line plan. Therefore, finding a balance between the adaptability to passenger flow demand and such a relatively fixed line plan structure has become a difficult problem, which is a crucial factor in the sustainable operation of railway passenger transport. This paper first designs and proposes an algorithm for compiling the line pool of weekend and peak lines. By introducing the time dimension, a multi-day train service network is constructed. Then, an optimized model for the holiday line planning problem (HLPP) that comprehensively considers passenger flow demand and plan structure is established. Taking the Qingming Festival as an example, the results showed that among the trains with expanded formations in the optimized holiday line plan, short-distance trains accounted for nearly 70% and some long-distance trains was cancelled, reducing the operation cost by 4.46% compared to the actual plan. The train routing plan also maintains similarity to the weekday EMU circulation. It is demonstrated that the method proposed in this paper can achieve a better balance between efficient resource utilization and operational stability, enhancing the sustainable operability and profitability of the high-speed railway system.

Suggested Citation

  • Peiwen Han & Lu Tong & Wenjun Li & Xin Zhang & Wuyang Yuan & Yu Ke, 2025. "Modeling the Holiday Line Planning Problem with Profitability and Homogeneity Under Passenger Flow Explosion Conditions in China—A Sustainable Perspective," Sustainability, MDPI, vol. 17(5), pages 1-35, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2193-:d:1604443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    2. Ioachim, Irina & Desrosiers, Jacques & Soumis, Francois & Belanger, Nicolas, 1999. "Fleet assignment and routing with schedule synchronization constraints," European Journal of Operational Research, Elsevier, vol. 119(1), pages 75-90, November.
    3. Goossens, Jan-Willem & van Hoesel, Stan & Kroon, Leo, 2006. "On solving multi-type railway line planning problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 403-424, January.
    4. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    5. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    6. Michael R. Bussieck & Thomas Lindner & Marco E. Lübbecke, 2004. "A fast algorithm for near cost optimal line plans," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(2), pages 205-220, June.
    7. Bélanger, Nicolas & Desaulniers, Guy & Soumis, François & Desrosiers, Jacques & Lavigne, June, 2006. "Weekly airline fleet assignment with homogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 306-318, May.
    8. Böhler, Susanne & Grischkat, Sylvie & Haustein, Sonja & Hunecke, Marcel, 2006. "Encouraging environmentally sustainable holiday travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(8), pages 652-670, October.
    9. Jan-Willem Goossens & Stan van Hoesel & Leo Kroon, 2004. "A Branch-and-Cut Approach for Solving Railway Line-Planning Problems," Transportation Science, INFORMS, vol. 38(3), pages 379-393, August.
    10. Claessens, M. T. & van Dijk, N. M. & Zwaneveld, P. J., 1998. "Cost optimal allocation of rail passenger lines," European Journal of Operational Research, Elsevier, vol. 110(3), pages 474-489, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid, Faiz & Agarwal, Yogesh K., 2024. "Train stop scheduling problem: An exact approach using valid inequalities and polar duality," European Journal of Operational Research, Elsevier, vol. 313(1), pages 207-224.
    2. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    3. Schiewe, Alexander & Schiewe, Philine & Schmidt, Marie, 2019. "The line planning routing game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 560-573.
    4. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    5. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.
    6. Hu, Huaibin & Yue, Yixiang & Fu, Huiling & Li, Jiaxi, 2024. "How to optimize train lines for diverse passenger demands: A line planning approach providing matched train services for each O-D market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    7. Jinfei Wu & Xinghua Shan & Jingxia Sun & Shengyuan Weng & Shuo Zhao, 2023. "Daily Line Planning Optimization for High-Speed Railway Lines," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    9. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    10. Mathias Michaelis & Anita Schöbel, 2009. "Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic," Public Transport, Springer, vol. 1(3), pages 211-232, August.
    11. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    12. Yao, Zhiyuan & Nie, Lei & Fu, Huiling, 2024. "Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    13. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    14. Wenliang Zhou & Xiang Li & Xin Shi, 2023. "Joint Optimization of Time-Dependent Line Planning and Differential Pricing with Passenger Train Choice in High-Speed Railway Networks," Mathematics, MDPI, vol. 11(6), pages 1-28, March.
    15. Gattermann, P. & Schiewe, A. & Schmidt, M.E., 2014. "The line planning routing game," ERIM Report Series Research in Management ERS-2014-017-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    17. Xin Zhang & Lei Nie & Xin Wu & Yu Ke, 2020. "How to Optimize Train Stops under Diverse Passenger Demand: a New Line Planning Method for Large-Scale High-Speed Rail Networks," Networks and Spatial Economics, Springer, vol. 20(4), pages 963-988, December.
    18. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Peng, Qiyuan, 2024. "Integrating train service route design with passenger flow allocation for an urban rail transit line," European Journal of Operational Research, Elsevier, vol. 313(1), pages 146-170.
    19. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    20. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2193-:d:1604443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.