A comparative study on effect of news sentiment on stock price prediction with deep learning architecture
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0284695
Download full text from publisher
References listed on IDEAS
- Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
- Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
- Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
- Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Namitha Yeldho & Dany Thomas & Vimal George Kurian & Chandralekha Arathy & Ajithakumari Vijayappan Nair Biju, 2025. "Are machine learning models effective in predicting emerging markets? Investigating the accuracy of predictions in emerging stock market indices," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 839-904, February.
- Abel Díaz Berenguer & Yifei Da & Matías Nicolás Bossa & Meshia Cédric Oveneke & Hichem Sahli, 2024. "Causality-driven multivariate stock movement forecasting," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-41, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
- Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Ying Liu & Zengyu Wei & Long Chen & Cai Xu & Ziyu Guan, 2025. "Multi-Modal Temporal Dynamic Graph Construction for Stock Rank Prediction," Mathematics, MDPI, vol. 13(5), pages 1-20, March.
- Lu Peng & Sheng‐Xiang Lv & Lin Wang, 2024. "Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model‐agnostic explanations for multivariate wind speed forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2064-2087, September.
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Wuyue An & Lin Wang & Yu‐Rong Zeng, 2023. "Text‐based soybean futures price forecasting: A two‐stage deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 312-330, March.
- Jun Shu & Xinyu Xia & Suyue Han & Zuli He & Ke Pan & Bin Liu, 2024. "Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-23, May.
- Yi Feng & Xiya Cui & Jingjing Lv & Bingyu Yan & Xin Meng & Li Zhang & Yanhui Guo, 2023. "Deep learning models for hepatitis E incidence prediction leveraging meteorological factors," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-15, March.
- Nicole Königstein, 2023. "Dynamic and context-dependent stock price prediction using attention modules and news sentiment," Digital Finance, Springer, vol. 5(3), pages 449-481, December.
- Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
- Tej Bahadur Shahi & Chiranjibi Sitaula & Arjun Neupane & William Guo, 2022. "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
- Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
- Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Cheng, Min-Yuan & Vu, Quoc-Tuan, 2024. "Bio-inspired bidirectional deep machine learning for real-time energy consumption forecasting and management," Energy, Elsevier, vol. 302(C).
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Duan, Huayou & Zhao, Chenchen & Wang, Lu & Liu, Guangqiang, 2024. "The relationship between renewable energy attention and volatility: A HAR model with markov time-varying transition probability," Research in International Business and Finance, Elsevier, vol. 71(C).
- Pradyot Ranjan Jena & Shunsuke Managi & Babita Majhi, 2021. "Forecasting the CO 2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling," Energies, MDPI, vol. 14(19), pages 1-23, October.
- Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284695. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.