IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302558.html
   My bibliography  Save this article

Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China

Author

Listed:
  • Jun Shu
  • Xinyu Xia
  • Suyue Han
  • Zuli He
  • Ke Pan
  • Bin Liu

Abstract

Accurate forecasts of water demand are a crucial factor in the strategic planning and judicious use of finite water resources within a region, underpinning sustainable socio-economic development. This study aims to compare the applicability of various artificial intelligence models for long-term water demand forecasting across different water use sectors. We utilized the Tuojiang River basin in Sichuan Province as our case study, comparing the performance of five artificial intelligence models: Genetic Algorithm optimized Back Propagation Neural Network (GA-BP), Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Random Forest (RF). These models were employed to predict water demand in the agricultural, industrial, domestic, and ecological sectors using actual water demand data and relevant influential factors from 2005 to 2020. Model performance was evaluated based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), with the most effective model used for 2025 water demand projections for each sector within the study area. Our findings reveal that the GPR model demonstrated superior results in predicting water demand for the agricultural, domestic, and ecological sectors, attaining R2 values of 0.9811, 0.9338, and 0.9142 for the respective test sets. Also, the GA-BP model performed optimally in predicting industrial water demand, with an R2 of 0.8580. The identified optimal prediction model provides a useful tool for future long-term water demand forecasting, promoting sustainable water resource management.

Suggested Citation

  • Jun Shu & Xinyu Xia & Suyue Han & Zuli He & Ke Pan & Bin Liu, 2024. "Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-23, May.
  • Handle: RePEc:plo:pone00:0302558
    DOI: 10.1371/journal.pone.0302558
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302558
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302558&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baoyong Yan & Xiantao Zhang & Chengxu Tang & Xiao Wang & Yifei Yang & Weihua Xu, 2023. "A Random Forest-Based Method for Predicting Borehole Trajectories," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    2. Muhammad Al-Zahrani & Amin Abo-Monasar, 2015. "Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3651-3662, August.
    3. Mukand Babel & Victor Shinde, 2011. "Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1653-1676, April.
    4. Liangxin Fan & Guobin Liu & Fei Wang & Coen Ritsema & Violette Geissen, 2014. "Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 853-865, February.
    5. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    6. Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.
    7. Ying Wang & Bo Feng & Qing-Song Hua & Li Sun, 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    8. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    9. Hua’an Wu & Bo Zeng & Meng Zhou, 2017. "Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption," IJERPH, MDPI, vol. 14(11), pages 1-12, November.
    10. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Liu & Zengyu Wei & Long Chen & Cai Xu & Ziyu Guan, 2025. "Multi-Modal Temporal Dynamic Graph Construction for Stock Rank Prediction," Mathematics, MDPI, vol. 13(5), pages 1-20, March.
    2. Almando Morain & Nivedita Ilangovan & Christopher Delhom & Aavudai Anandhi, 2024. "Artificial Intelligence for Water Consumption Assessment: State of the Art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3113-3134, July.
    3. Keshab Raj Dahal & Nawa Raj Pokhrel & Santosh Gaire & Sharad Mahatara & Rajendra P Joshi & Ankrit Gupta & Huta R Banjade & Jeorge Joshi, 2023. "A comparative study on effect of news sentiment on stock price prediction with deep learning architecture," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-19, April.
    4. Md Haque & Ataur Rahman & Dharma Hagare & Golam Kibria, 2014. "Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1959-1971, May.
    5. Nicole Königstein, 2023. "Dynamic and context-dependent stock price prediction using attention modules and news sentiment," Digital Finance, Springer, vol. 5(3), pages 449-481, December.
    6. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    7. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    8. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    9. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    10. Donglan Zha & Qian Chen & Jaume Freire González, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    11. Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
    12. Zhenhui Huang & Wei Wei & Ying Han & Shuangying Ding & Ke Tang, 2022. "The Coupling Coordination Evolutionary Analysis of Tourism-Ecological Environment-Public Service for the Yellow River Basin of China," IJERPH, MDPI, vol. 19(15), pages 1-23, July.
    13. Mukand Babel & Nisuchcha Maporn & Victor Shinde, 2014. "Incorporating Future Climatic and Socioeconomic Variables in Water Demand Forecasting: A Case Study in Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2049-2062, May.
    14. Francisco Silva Pinto & Rui Cunha Marques, 2016. "Tariff Suitability Framework for Water Supply Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2037-2053, April.
    15. Yu-Feng Zhao & Ming-Huan Shou & Zheng-Xin Wang, 2020. "Prediction of the Number of Patients Infected with COVID-19 Based on Rolling Grey Verhulst Models," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    16. Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    17. Nwokike Chukwudike C. & Ugoala & Chukwuma B. & Obubu Maxwell & Uche-Ikonne Okezie O. & Offorha Bright C. & Ukomah Henry I., 2020. "Forecasting Monthly Prices of Gold Using Artificial Neural Network," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(3), pages 1-2.
    18. Yanbin Li & Yuhang Han & Hongxing Li & Kai Feng, 2024. "Understanding Agricultural Water Consumption Trends in Henan Province: A Spatio-Temporal and Determinant Analysis Using Geospatial Models," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
    19. Kanhua Yu & Lili Liu & Zhe Chen, 2021. "An Improved Slime Mould Algorithm for Demand Estimation of Urban Water Resources," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    20. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.