IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283585.html
   My bibliography  Save this article

Flexible supplier selection and order allocation in the big data era with various quantity discounts

Author

Listed:
  • Qing Wang

Abstract

This paper studies the flexible large-scale supplier selection and order allocation problem with various quantity discounts, i.e., no discount, all-unit discount, incremental discount, and carload discount. It fills a literature gap that models usually formulate one or seldom two types because of the modeling and solution difficulty. All suppliers offering the same discount are far from reality, especially when the number of suppliers is large. The proposed model is a variant of the NP-hard knapsack problem. The greedy algorithm, which solves the fractional knapsack problem optimally, is applied to cope with the challenge. Three greedy algorithms are developed using a problem property and two sorted lists. Simulations show the average optimality gaps are 0.1026%, 0.0547%, and 0.0234% and the model can be solved in centiseconds, densiseconds, and seconds for supplier numbers 1000, 10000, and 100000. This allows the full use of data in the big data era.

Suggested Citation

  • Qing Wang, 2023. "Flexible supplier selection and order allocation in the big data era with various quantity discounts," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-29, March.
  • Handle: RePEc:plo:pone00:0283585
    DOI: 10.1371/journal.pone.0283585
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283585
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283585&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    2. Sestino, Andrea & Prete, Maria Irene & Piper, Luigi & Guido, Gianluigi, 2020. "Internet of Things and Big Data as enablers for business digitalization strategies," Technovation, Elsevier, vol. 98(C).
    3. Meena, P.L. & Sarmah, S.P., 2013. "Multiple sourcing under supplier failure risk and quantity discount: A genetic algorithm approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 84-97.
    4. James V. Jucker & Meir J. Rosenblatt, 1985. "Single‐period inventory models with demand uncertainty and quantity discounts: Behavioral implications and a new solution procedure," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(4), pages 537-550, November.
    5. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.
    6. Renault, Jérôme & Solan, Eilon & Vieille, Nicolas, 2017. "Optimal dynamic information provision," Games and Economic Behavior, Elsevier, vol. 104(C), pages 329-349.
    7. Burke, Gerard J. & Carrillo, Janice & Vakharia, Asoo J., 2008. "Heuristics for sourcing from multiple suppliers with alternative quantity discounts," European Journal of Operational Research, Elsevier, vol. 186(1), pages 317-329, April.
    8. Peter Jacko, 2016. "Resource capacity allocation to stochastic dynamic competitors: knapsack problem for perishable items and index-knapsack heuristic," Annals of Operations Research, Springer, vol. 241(1), pages 83-107, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    2. Nguyen, H.N. & Rainwater, C.E. & Mason, S.J. & Pohl, E.A., 2014. "Quantity discount with freight consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 66-82.
    3. Koessler, Frederic & Laclau, Marie & Renault, Jérôme & Tomala, Tristan, 2022. "Long information design," Theoretical Economics, Econometric Society, vol. 17(2), May.
    4. Urtzi Ayesta & Manu K. Gupta & Ina Maria Verloop, 2021. "On the computation of Whittle’s index for Markovian restless bandits," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 179-208, February.
    5. Yong-Wu Zhou & Chuanying Chen & Yuanguang Zhong & Bin Cao, 2020. "The allocation optimization of promotion budget and traffic volume for an online flash-sales platform," Annals of Operations Research, Springer, vol. 291(1), pages 1183-1207, August.
    6. Qingyu Zhang & Aman Ullah & Sana Ashraf & Muhammad Abdullah, 2024. "Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    7. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
    8. Chen, Xian & Liu, Yang & Wen, Fenghua, 2024. "Air pollution and the digital transformation," International Review of Economics & Finance, Elsevier, vol. 96(PC).
    9. Videsh Desingh & Baskaran R, 2022. "Internet of Things adoption barriers in the Indian healthcare supply chain: An ISM‐fuzzy MICMAC approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 318-351, January.
    10. Makris, Miltiadis & Renou, Ludovic, 2023. "Information design in multi-stage games," Theoretical Economics, Econometric Society, vol. 18(4), November.
    11. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    12. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    13. Zhao, Wei & Mezzetti, Claudio & Renou, Ludovic & Tomala, Tristan, 2024. "Contracting over persistent information," Theoretical Economics, Econometric Society, vol. 19(2), May.
    14. Qin, Hu & Luo, Meifeng & Gao, Xiang & Lim, Andrew, 2012. "The freight allocation problem with all-units quantity-based discount: A heuristic algorithm," Omega, Elsevier, vol. 40(4), pages 415-423.
    15. Christoph Stoiber & Stefan Schönig, 2024. "Leveraging the industrial internet of things for business process improvement: a metamodel and patterns," Information Systems and e-Business Management, Springer, vol. 22(2), pages 285-313, June.
    16. Marco Cioppi & Ilaria Curina & Barbara Francioni & Elisabetta Savelli, 2023. "Digital transformation and marketing: a systematic and thematic literature review," Italian Journal of Marketing, Springer, vol. 2023(2), pages 207-288, June.
    17. Johannes Hörner & Nicolas S Lambert, 2021. "Motivational Ratings [Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 1892-1935.
    18. Bartoloni, Sara & Calò, Ernesto & Marinelli, Luca & Pascucci, Federica & Dezi, Luca & Carayannis, Elias & Revel, Gian Marco & Gregori, Gian Luca, 2022. "Towards designing society 5.0 solutions: The new Quintuple Helix - Design Thinking approach to technology," Technovation, Elsevier, vol. 113(C).
    19. Sarbu, Miruna, 2022. "The impact of industry 4.0 on innovation performance: Insights from German manufacturing and service firms," Technovation, Elsevier, vol. 113(C).
    20. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.