IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0281837.html
   My bibliography  Save this article

Parliamentary roll-call voting as a complex dynamical system: The case of Chile

Author

Listed:
  • Diego Morales-Bader
  • Ramón D Castillo
  • Ralf F A Cox
  • Carlos Ascencio-Garrido

Abstract

A method is proposed to study the temporal variability of legislative roll-call votes in a parliament from the perspective of complex dynamical systems. We studied the Chilean Chamber of Deputies’ by analyzing the agreement ratio and the voting outcome of each vote over the last 19 years with a Recurrence Quantification Analysis and an entropy analysis (Sample Entropy). Two significant changes in the temporal variability were found: one in 2014, where the voting outcome became more recurrent and with less entropy, and another in 2018, where the agreement ratio became less recurrent and with higher entropy. These changes may be directly related to major changes in the Chilean electoral system and the composition of the Chamber of Deputies, given that these changes occurred just after the first parliamentary elections with non-compulsory voting (2013 elections) and the first elections with a proportional system in conjunction with an increase in the number of deputies (2017 elections) were held.

Suggested Citation

  • Diego Morales-Bader & Ramón D Castillo & Ralf F A Cox & Carlos Ascencio-Garrido, 2023. "Parliamentary roll-call voting as a complex dynamical system: The case of Chile," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0281837
    DOI: 10.1371/journal.pone.0281837
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281837
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0281837&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0281837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross, Gordon J., 2015. "Parametric and Nonparametric Sequential Change Detection in R: The cpm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i03).
    2. Puccio, Elena & Pajala, Antti & Piilo, Jyrki & Tumminello, Michele, 2016. "Structure and evolution of a European Parliament via a network and correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 167-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.
    2. Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
    3. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    4. Gian Luca Vriz & Luigi Grossi, 2024. "Green bubbles: a four-stage paradigm for detection and propagation," Papers 2410.06564, arXiv.org.
    5. Ciaran Evans & Max G’Sell, 2024. "Sequential label shift detection in classification data: An application to dengue fever," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-16, September.
    6. Hang Xu & Philip L.H. Yu & Mayer Alvo, 2019. "Detecting change points in the stress‐strength reliability P(X," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 837-857, May.
    7. Brice B. Hanberry, 2021. "Timing of Tree Density Increases, Influence of Climate Change, and a Land Use Proxy for Tree Density Increases in the Eastern United States," Land, MDPI, vol. 10(11), pages 1-17, October.
    8. Peter M C Harrison & Roberta Bianco & Maria Chait & Marcus T Pearce, 2020. "PPM-Decay: A computational model of auditory prediction with memory decay," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-41, November.
    9. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    10. Magda Monteiro & Marco Costa, 2023. "Change Point Detection by State Space Modeling of Long-Term Air Temperature Series in Europe," Stats, MDPI, vol. 6(1), pages 1-18, January.
    11. Lykou, R. & Tsaklidis, G. & Papadimitriou, E., 2020. "Change point analysis on the Corinth Gulf (Greece) seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Yanlin Shi, 2023. "A simulation study on the Markov regime-switching zero-drift GARCH model," Annals of Operations Research, Springer, vol. 330(1), pages 1-20, November.
    13. Park, Beum-Jo, 2022. "The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market," Research in International Business and Finance, Elsevier, vol. 59(C).
    14. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    15. repec:osf:osfxxx:fzqxv_v1 is not listed on IDEAS
    16. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    18. Baolong Ying & Qijing Yan & Zehua Chen & Jinchao Du, 2024. "A sequential feature selection approach to change point detection in mean-shift change point models," Statistical Papers, Springer, vol. 65(6), pages 3893-3915, August.
    19. Nora M. Villanueva & Marta Sestelo & Miguel M. Fonseca & Javier Roca-Pardiñas, 2023. "seq2R: An R Package to Detect Change Points in DNA Sequences," Mathematics, MDPI, vol. 11(10), pages 1-20, May.
    20. Rui Qiang & Eric Ruggieri, 2023. "Autocorrelation and Parameter Estimation in a Bayesian Change Point Model," Mathematics, MDPI, vol. 11(5), pages 1-22, February.
    21. Nick James & Max Menzies & Jennifer Chan, 2023. "Semi-Metric Portfolio Optimization: A New Algorithm Reducing Simultaneous Asset Shocks," Econometrics, MDPI, vol. 11(1), pages 1-33, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.