IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0280761.html
   My bibliography  Save this article

Experimental and machine learning approaches to investigate the effect of waste glass powder on the flexural strength of cement mortar

Author

Listed:
  • Muhammad Nasir Amin
  • Hassan Ali Alkadhim
  • Waqas Ahmad
  • Kaffayatullah Khan
  • Hisham Alabduljabbar
  • Abdullah Mohamed

Abstract

Using solid waste in building materials is an efficient approach to achieving sustainability goals. Also, the application of modern methods like artificial intelligence is gaining attention. In this regard, the flexural strength (FS) of cementitious composites (CCs) incorporating waste glass powder (WGP) was evaluated via both experimental and machine learning (ML) methods. WGP was utilized to partially substitute cement and fine aggregate separately at replacement levels of 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15%. At first, the FS of WGP-based CCs was determined experimentally. The generated data, which included six inputs, was then used to run ML techniques to forecast the FS. For FS estimation, two ML approaches were used, including a support vector machine and a bagging regressor. The effectiveness of ML models was assessed by the coefficient of determination (R2), k-fold techniques, statistical tests, and examining the variation amongst experimental and forecasted FS. The use of WGP improved the FS of CCs, as determined by the experimental results. The highest FS was obtained when 10% and 15% WGP was utilized as a cement and fine aggregate replacement, respectively. The modeling approaches’ results revealed that the support vector machine method had a fair level of accuracy, but the bagging regressor method had a greater level of accuracy in estimating the FS. Using ML strategies will benefit the building industry by expediting cost-effective and rapid solutions for analyzing material characteristics.

Suggested Citation

  • Muhammad Nasir Amin & Hassan Ali Alkadhim & Waqas Ahmad & Kaffayatullah Khan & Hisham Alabduljabbar & Abdullah Mohamed, 2023. "Experimental and machine learning approaches to investigate the effect of waste glass powder on the flexural strength of cement mortar," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0280761
    DOI: 10.1371/journal.pone.0280761
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280761
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0280761&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0280761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dahai Wang & Jun Peng & Qian Yu & Yuanyuan Chen & Hanghang Yu, 2019. "Support Vector Machine Algorithm for Automatically Identifying Depositional Microfacies Using Well Logs," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    2. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    3. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    3. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    4. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    5. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    6. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    7. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CARF F-Series CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    9. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    10. Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021. "Bagging weak predictors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
    11. Stoupos, Nikolaos & Kiohos, Apostolos, 2021. "Energy commodities and advanced stock markets: A post-crisis approach," Resources Policy, Elsevier, vol. 70(C).
    12. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    13. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    14. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    15. Guangjuan Fan & Ting Dong & Yuejun Zhao & Yalou Zhou & Wentong Zhao & Jie Wang & Yilong Wang, 2023. "Establishment and Application of a Pattern for Identifying Sedimentary Microfacies of a Single Horizontal Well: An Example from the Eastern Transition Block in the Daqing Oilfield, Songliao Basin, Chi," Energies, MDPI, vol. 16(20), pages 1-19, October.
    16. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    17. Raillard--Cazanove, Quentin & Rogeau, Antoine & Girard, Robin, 2025. "Decarbonisation modelling for key industrial sectors focusing on process changes in a cost-optimised pathway," Applied Energy, Elsevier, vol. 382(C).
    18. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    19. Yelin Deng & Yajun Tian, 2015. "Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    20. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0280761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.