IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278593.html
   My bibliography  Save this article

Relationship between students’ attitude towards, and performance in mathematics word problems

Author

Listed:
  • Robert Wakhata
  • Sudi Balimuttajjo
  • Védaste Mutarutinya

Abstract

The study explored the relationship between students’ attitude towards, and performance in mathematics word problems (MWTs), mediated by the active learning heuristic problem solving (ALHPS) approach. Specifically, this study investigated the correlation between students’ performance and their attitude towards linear programming word tasks (ATLPWTs). Tools for data collection were: the adapted Attitude towards Mathematics Inventory-Short Form (ATMI-SF), (α = .75) as a multidimensional measurement tool, and linear programming achievement tests (pre-test and post-test). A quantitative approach with a quasi-experimental pre-test, post-test non-equivalent control group study design was adopted. A sample of 608 eleventh-grade Ugandan students (291 male and 317 female) from eight secondary schools (both public and private) participated. Data were analyzed using PROCESS macro (v.4) for SPSS version 26. The results revealed a direct significant positive relationship between students’ performance and their ATLPWTs. Thus, students’ attitude positively and directly impacted their performance in solving linear programming word problems. The present study contributes to the literature on performance and attitude towards learning mathematics. Overall, the findings carry useful practical implications that can support theoretical and conceptual framework for enhancing students’ performance and attitude towards mathematics word problems.

Suggested Citation

  • Robert Wakhata & Sudi Balimuttajjo & Védaste Mutarutinya, 2024. "Relationship between students’ attitude towards, and performance in mathematics word problems," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-26, February.
  • Handle: RePEc:plo:pone00:0278593
    DOI: 10.1371/journal.pone.0278593
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278593
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278593&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    2. repec:aoj:jeelre:v:8:y:2021:i:3:p:272-280:id:3198 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    2. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    5. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    6. Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.
    7. Constantine A. Vitt & Darinka Dentcheva & Andrzej Ruszczyński & Nolan Sandberg, 2023. "The deepest event cuts in risk-averse optimization with application to radiation therapy design," Computational Optimization and Applications, Springer, vol. 86(3), pages 1347-1372, December.
    8. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    9. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    10. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    11. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    12. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    13. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.
    14. Arkajyoti Roy & Shaunak S. Dabadghao & Ahmadreza Marandi, 2024. "Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance," Annals of Operations Research, Springer, vol. 339(3), pages 1307-1328, August.
    15. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    16. Hao Howard Zhang & Leyuan Shi & Robert Meyer & Daryl Nazareth & Warren D'Souza, 2009. "Solving Beam-Angle Selection and Dose Optimization Simultaneously via High-Throughput Computing," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 427-444, August.
    17. Hanif Malekpoor & Nishikant Mishra & Sameer Kumar, 2022. "A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment," Annals of Operations Research, Springer, vol. 312(2), pages 1403-1425, May.
    18. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    19. Sera Kahruman & Elif Ulusal & Sergiy Butenko & Illya Hicks & Kathleen Diehl, 2012. "Scheduling the adjuvant endocrine therapy for early stage breast cancer," Annals of Operations Research, Springer, vol. 196(1), pages 683-705, July.
    20. Kim, Minsun & Ghate, Archis & Phillips, Mark H., 2012. "A stochastic control formalism for dynamic biologically conformal radiation therapy," European Journal of Operational Research, Elsevier, vol. 219(3), pages 541-556.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.