IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0276210.html
   My bibliography  Save this article

Multi‑strategy Equilibrium Optimizer: An improved meta-heuristic tested on numerical optimization and engineering problems

Author

Listed:
  • Yu Li
  • Xiao Liang
  • Jingsen Liu
  • Huan Zhou

Abstract

The Equilibrium Optimizer (EO) is a recently proposed intelligent optimization algorithm based on mass balance equation. It has a novel principle to deal with global optimization. However, when solving complex numerical optimization problems and engineering problems, the algorithm will get stuck into local optima and degrade accuracy. To address the issue, an improved Equilibrium Optimizer (IEO) based on multi-strategy optimization is proposed. First, Tent mapping is used to generate the initial location of the particle population, which evenly distributes the particle population and lays the foundation for diversified global search process. Moreover, nonlinear time parameter is used to update the position equation, which dynamically balances the exploration and exploitation phases of improved algorithm. Finally, Lens Opposition‑based Learning (LOBL) is introduced, which avoids local optimization by improving the population diversity of the algorithm. Simulation experiments are carried out on 23 classical functions, IEEE CEC2017 problems and IEEE CEC2019 problems, and the stability of the algorithm is further analyzed by Friedman statistical test and box plots. Experimental results show that the algorithm has good solution accuracy and robustness. Additionally, six engineering design problems are solved, and the results show that improved algorithm has high optimization efficiency achieves cost minimization.

Suggested Citation

  • Yu Li & Xiao Liang & Jingsen Liu & Huan Zhou, 2022. "Multi‑strategy Equilibrium Optimizer: An improved meta-heuristic tested on numerical optimization and engineering problems," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-47, October.
  • Handle: RePEc:plo:pone00:0276210
    DOI: 10.1371/journal.pone.0276210
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276210
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0276210&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0276210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    2. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    2. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Thibaud Deguilhem & Juliette Schlegel & Jean-Philippe Berrou & Ousmane Djibo & Alain Piveteau, 2024. "Too many options: How to identify coalitions in a policy network?," Post-Print hal-04689665, HAL.
    4. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    5. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    6. Nha Vo‐Thanh & Hans‐Peter Piepho, 2023. "Generating designs for comparative experiments with two blocking factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3574-3585, December.
    7. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    8. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    9. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    10. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    11. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    12. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    13. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 2017. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 17(3), pages 275-314, September.
    14. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    15. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    16. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    17. J-F Chen & T-H Wu, 2006. "Vehicle routing problem with simultaneous deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 579-587, May.
    18. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    19. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 0. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 0, pages 1-40.
    20. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.