IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0273551.html
   My bibliography  Save this article

On the use of discrete-time quantum walks in decision theory

Author

Listed:
  • Ming Chen
  • Giuseppe M Ferro
  • Didier Sornette

Abstract

We present a short review of discrete-time quantum walks (DTQW) as a potentially useful and rich formalism to model human decision-making. We present a pedagogical introduction of the underlying formalism and main structural properties. We suggest that DTQW are particularly suitable for combining the two strands of literature on evidence accumulator models and on the quantum formalism of cognition. Due to the additional spin degree of freedom, models based on DTQW allow for a natural modeling of model choice and confidence rating in separate bases. Levels of introspection and self-assessment during choice deliberations can be modeled by the introduction of a probability for measurement of either position and/or spin of the DTQW, where each measurement act leads to a partial decoherence (corresponding to a step towards rationalization) of the deliberation process. We show how quantum walks predict observed probabilistic misperception like S-shaped subjective probability and conjunction fallacy. Our framework emphasizes the close relationship between response times and type of preferences and of responses. In particular, decision theories based on DTQW do not need to invoke two systems (“fast” and “slow”) as in dual process theories. Within our DTQW framework, the two fast and slow systems are replaced by a single system, but with two types of self-assessment or introspection. The “thinking fast” regime is obtained with no or little self-assessment, while the “thinking slow” regime corresponds to a strong rate of self-assessment. We predict a trade-off between speed and accuracy, as empirically reported.

Suggested Citation

  • Ming Chen & Giuseppe M Ferro & Didier Sornette, 2022. "On the use of discrete-time quantum walks in decision theory," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-32, August.
  • Handle: RePEc:plo:pone00:0273551
    DOI: 10.1371/journal.pone.0273551
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273551
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0273551&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0273551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Chesley, Gr, 1978. "Subjective-Probability Elicitation Techniques - Performance Comparison," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 16(2), pages 225-241.
    3. Mohr, Peter N. C. & Heekeren, Hauke R. & Rieskamp, Jörg, 2017. "Attraction Effect in Risky Choice Can Be Explained by Subjective Distance Between Choice Alternatives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 1-10.
    4. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    2. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    4. H. Peter Boswijk & Jeroen Dalderop & Roger J. A. Laeven & Niels Marijnen, 2025. "Semiparametric Estimation of Probability Weighting Functions Implicit in Option Prices," Tinbergen Institute Discussion Papers 25-022/III, Tinbergen Institute.
    5. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    6. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    7. Yaron Azrieli & Christopher P. Chambers & Paul J. Healy, 2020. "Incentives in experiments with objective lotteries," Experimental Economics, Springer;Economic Science Association, vol. 23(1), pages 1-29, March.
    8. Ariane Charpin, 2018. "Tests des modèles de décision en situation de risque. Le cas des parieurs hippiques en France," Revue économique, Presses de Sciences-Po, vol. 69(5), pages 779-803.
    9. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    10. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    11. Bocqueho, Geraldine & Jacquet, Florence & Reynaud, Arnaud, 2011. "Expected Utility or Prospect Theory Maximizers? Results from a Structural Model based on Field-experiment Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114257, European Association of Agricultural Economists.
    12. Markus Dertwinkel-Kalt & Jonas Frey, 2020. "Optimal Stopping in a Dynamic Salience Model," CESifo Working Paper Series 8496, CESifo.
    13. Luís Santos-Pinto & Adrian Bruhin & José Mata & Thomas Åstebro, 2015. "Detecting heterogeneous risk attitudes with mixed gambles," Theory and Decision, Springer, vol. 79(4), pages 573-600, December.
    14. Serge Blondel, 2003. "Généralisation de l’espérance d’utilité : le cas des jeux de loterie en France," Économie et Prévision, Programme National Persée, vol. 159(3), pages 105-112.
    15. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2014. "Dual criteria decisions," Journal of Economic Psychology, Elsevier, vol. 41(C), pages 101-113.
      • Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet, 2009. "Dual Criteria Decisions," Working Papers 02-2009, Copenhagen Business School, Department of Economics.
    16. Kocher, Martin G. & Krawczyk, Michal & van Winden, Frans, 2014. "‘Let me dream on!’ Anticipatory emotions and preference for timing in lotteries," Journal of Economic Behavior & Organization, Elsevier, vol. 98(C), pages 29-40.
    17. Michele Belot & Philipp Kircher & Paul Muller, 2021. "Eliciting time preferences when income and consumption vary: Theory, validation & application to job search," Tinbergen Institute Discussion Papers 21-013/V, Tinbergen Institute.
    18. Yokoo, Hide-Fumi & Arimura, Toshi H. & Chattopadhyay, Mriduchhanda & Katayama, Hajime, 2023. "Subjective risk belief function in the field: Evidence from cooking fuel choices and health in India," Journal of Development Economics, Elsevier, vol. 161(C).
    19. Olivier Chanel & Graciela Chichilnisky, 2009. "The influence of fear in decisions: Experimental evidence," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 271-298, December.
    20. Tsang, Ming, 2020. "Estimating uncertainty aversion using the source method in stylized tasks with varying degrees of uncertainty," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 84(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.