IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272442.html
   My bibliography  Save this article

Using patient biomarker time series to determine mortality risk in hospitalised COVID-19 patients: A comparative analysis across two New York hospitals

Author

Listed:
  • Ben Lambert
  • Isaac J Stopard
  • Amir Momeni-Boroujeni
  • Rachelle Mendoza
  • Alejandro Zuretti

Abstract

A large range of prognostic models for determining the risk of COVID-19 patient mortality exist, but these typically restrict the set of biomarkers considered to measurements available at patient admission. Additionally, many of these models are trained and tested on patient cohorts from a single hospital, raising questions about the generalisability of results. We used a Bayesian Markov model to analyse time series data of biomarker measurements taken throughout the duration of a COVID-19 patient’s hospitalisation for n = 1540 patients from two hospitals in New York: State University of New York (SUNY) Downstate Health Sciences University and Maimonides Medical Center. Our main focus was to quantify the mortality risk associated with both static (e.g. demographic and patient history variables) and dynamic factors (e.g. changes in biomarkers) throughout hospitalisation, by so doing, to explain the observed patterns of mortality. By using our model to make predictions across the hospitals, we assessed how predictive factors generalised between the two cohorts. The individual dynamics of the measurements and their associated mortality risk were remarkably consistent across the hospitals. The model accuracy in predicting patient outcome (death or discharge) was 72.3% (predicting SUNY; posterior median accuracy) and 71.3% (predicting Maimonides) respectively. Model sensitivity was higher for detecting patients who would go on to be discharged (78.7%) versus those who died (61.8%). Our results indicate the utility of including dynamic clinical measurements when assessing patient mortality risk but also highlight the difficulty of identifying high risk patients.

Suggested Citation

  • Ben Lambert & Isaac J Stopard & Amir Momeni-Boroujeni & Rachelle Mendoza & Alejandro Zuretti, 2022. "Using patient biomarker time series to determine mortality risk in hospitalised COVID-19 patients: A comparative analysis across two New York hospitals," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0272442
    DOI: 10.1371/journal.pone.0272442
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272442
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272442&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    2. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    3. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    4. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    5. Spilker Finn & Ötting Marius, 2024. "No cheering in the background? Individual performance in professional darts during COVID-19," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 20(3), pages 219-234.
    6. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    7. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    8. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    9. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    10. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    11. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    12. Robert Kubinec & Haillie Na‐Kyung Lee & Andrey Tomashevskiy, 2021. "Politically connected companies are less likely to shutdown due to COVID‐19 restrictions," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2155-2169, September.
    13. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    14. Salvatore Nunnari & Massimiliano Pozzi, 2022. "Meta-Analysis of Inequality Aversion Estimates," CESifo Working Paper Series 9851, CESifo.
    15. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.
    16. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    17. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    18. Kenneth F. Kellner & Arielle W. Parsons & Roland Kays & Joshua J. Millspaugh & Christopher T. Rota, 2022. "A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 321-338, June.
    19. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    20. repec:osf:osfxxx:fah3z_v1 is not listed on IDEAS
    21. Gómez-Ugarte, Ana C. & Chen, Irena & Acosta, Enrique & Basellini, Ugofilippo & Alburez-Gutierrez, Diego, 2025. "Accounting for uncertainty in conflict mortality estimation: An application to the Gaza War in 2023-2024," SocArXiv z4e7s_v1, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.