IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271904.html
   My bibliography  Save this article

Assessing dependence between frequency and severity through shared random effects

Author

Listed:
  • Devan G Becker
  • Douglas G Woolford
  • Charmaine B Dean

Abstract

Research on the occurrence and the final size of wildland fires typically models these two events as two separate processes. In this work, we develop and apply a compound process framework for jointly modelling the frequency and the severity of wildland fires. Separate modelling structures for the frequency and the size of fires are linked through a shared random effect. This allows us to fit an appropriate model for frequency and an appropriate model for size of fires while still having a method to estimate the direction and strength of the relationship (e.g., whether days with more fires are associated with days with large fires). The joint estimation of this random effect shares information between the models without assuming a causal structure. We explore spatial and temporal autocorrelation of the random effects to identify additional variation not explained by the inclusion of weather related covariates. The dependence between frequency and size of lightning-caused fires is found to be negative, indicating that an increase in the number of expected fires is associated with a decrease in the expected size of those fires, possibly due to the rainy conditions necessary for an increase in lightning. Person-caused fires were found to be positively dependent, possibly due to dry weather increasing human activity as well as the amount of dry few. For a test for independence, we perform a power study and find that simply checking whether zero is in the credible interval of the posterior of the linking parameter is as powerful as more complicated tests.

Suggested Citation

  • Devan G Becker & Douglas G Woolford & Charmaine B Dean, 2022. "Assessing dependence between frequency and severity through shared random effects," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-21, August.
  • Handle: RePEc:plo:pone00:0271904
    DOI: 10.1371/journal.pone.0271904
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271904
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271904&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    2. Frederic Paik Schoenberg, 2004. "Testing Separability in Spatial-Temporal Marked Point Processes," Biometrics, The International Biometric Society, vol. 60(2), pages 471-481, June.
    3. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    2. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    3. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    4. Ali Noudoostbeni & Kiran Kaur & Hashem Salarzadeh Jenatabadi, 2018. "A Comparison of Structural Equation Modeling Approaches with DeLone & McLean’s Model: A Case Study of Radio-Frequency Identification User Satisfaction in Malaysian University Libraries," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    5. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    6. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    7. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    8. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    9. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    10. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    11. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    12. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    13. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    14. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    15. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    16. L. Altieri & D. Cocchi & M. Ventrucci, 2025. "Entropy‐Based Assessment of Biodiversity, With Application to Ants' Nests Data," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
    17. Andrew J Edelman, 2012. "Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    18. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
    19. E. Juarez‐Colunga & G. L. Silva & C. B. Dean, 2017. "Joint modeling of zero‐inflated panel count and severity outcomes," Biometrics, The International Biometric Society, vol. 73(4), pages 1413-1423, December.
    20. Nikhil Kaza & T. William Lester & Daniel A. Rodriguez, 2013. "The Spatio-temporal Clustering of Green Buildings in the United States," Urban Studies, Urban Studies Journal Limited, vol. 50(16), pages 3262-3282, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.