IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270346.html
   My bibliography  Save this article

Travel pattern-based bus trip origin-destination estimation using smart card data

Author

Listed:
  • Inmook Lee
  • Shin-Hyung Cho
  • Kyoungtae Kim
  • Seung-Young Kho
  • Dong-Kyu Kim

Abstract

Smart card data are widely used in generating the origin and destination (O–D) matrix for public transit, which contains important information for transportation planning and operation. However, the generation of the O–D matrix is limited by the smart card data information that includes the boarding (origin) information without the alighting (destination) information. To solve this problem, trip chain methods have been proposed, thereby greatly contributing in estimating the destination using the smart card data. Nevertheless, unlinked trips, that is, trips with unknown destinations, are a persisting issue. The purpose of this study is to develop a method for estimating the destination of unlinked trips, in which trip chain methods cannot be applied, using temporal travel patterns and historical boarding records of the passengers based on long-term smart card data. The passengers were clustered by k-means clustering, and the time-of-day travel patterns were estimated for each cluster using a Gaussian mixture model. The travel patterns were formulated to estimate the destination of the passengers from the smart card data. The proposed method was verified using the 2018 smart card data collected in Sejong City, South Korea. The existing trip chain method matched the destinations of 60.0% of the total trips, whereas the proposed method improved the matching to 74.9% by additionally matching the destinations of 37.2% of the unlinked trips.

Suggested Citation

  • Inmook Lee & Shin-Hyung Cho & Kyoungtae Kim & Seung-Young Kho & Dong-Kyu Kim, 2022. "Travel pattern-based bus trip origin-destination estimation using smart card data," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0270346
    DOI: 10.1371/journal.pone.0270346
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270346
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270346&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sung-Bae Cho & Jin-Young Kim, 2021. "Clustered embedding using deep learning to analyze urban mobility based on complex transportation data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    2. Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximiliano Lizana & Charisma Choudhury & David Watling, 2024. "Investigating the potential of aggregated mobility indices for inferring public transport ridership changes," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peikun Li & Chaoqun Ma & Jing Ning & Yun Wang & Caihua Zhu, 2019. "Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    2. Baudains, Peter & Kalatian, Arash & Choudhury, Charisma F. & Manley, Ed, 2024. "Social inequality and the changing patterns of travel in the pandemic and post-pandemic era," Journal of Transport Geography, Elsevier, vol. 118(C).
    3. Wen, Jian & Nassir, Neema & Zhao, Jinhua, 2019. "Value of demand information in autonomous mobility-on-demand systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 346-359.
    4. Åse Jevinger & Jan A. Persson, 2019. "Exploring the potential of using real-time traveler data in public transport disturbance management," Public Transport, Springer, vol. 11(2), pages 413-441, August.
    5. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    6. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    7. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
    8. Jiaoe Wang & Yanan Li & Jingjuan Jiao & Haitao Jin & Fangye Du, 2023. "Bus ridership and its determinants in Beijing: A spatial econometric perspective," Transportation, Springer, vol. 50(2), pages 383-406, April.
    9. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    10. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    11. Zhou, Jiangping & Sipe, Neil & Ma, Zhenliang & Mateo-Babiano, Derlie & Darchen, Sébastien, 2019. "Monitoring transit-served areas with smartcard data: A Brisbane case study," Journal of Transport Geography, Elsevier, vol. 76(C), pages 265-275.
    12. Lijie Yu & Quan Chen & Kuanmin Chen, 2019. "Deviation of Peak Hours for Urban Rail Transit Stations: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    13. Zi-jia Wang & Hai-xu Liu & Shi Qiu & Ji-ping Fang & Ting Wang, 2019. "The Predictability of Short-Term Urban Rail Demand: Choice of Time Resolution and Methodology," Sustainability, MDPI, vol. 11(21), pages 1-16, November.
    14. Yadi Zhu & Feng Chen & Ming Li & Zijia Wang, 2018. "Inferring the Economic Attributes of Urban Rail Transit Passengers Based on Individual Mobility Using Multisource Data," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    15. Varvara Nikulina & David Simon & Henrik Ny & Henrikke Baumann, 2019. "Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 11(4), pages 1-37, February.
    16. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    17. Hongxia Feng & Yaotong Chen & Jinyi Wu & Zhenqian Zhao & Yuanqing Wang & Zhuoting Wang, 2023. "Urban Rail Transit Station Type Identification Based on “Passenger Flow—Land Use—Job-Housing”," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    18. Jadrić Mario & Pašalić Ivana Ninčević & Ćukušić Maja, 2020. "Process Mining Contributions to Discrete-event Simulation Modelling," Business Systems Research, Sciendo, vol. 11(2), pages 51-72, October.
    19. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    20. Ying Zhao & Jie Wei & Haijun Li & Yan Huang, 2024. "Predicting Station-Level Peak Hour Ridership of Metro Considering the Peak Deviation Coefficient," Sustainability, MDPI, vol. 16(3), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.