IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15103-d1264111.html
   My bibliography  Save this article

Urban Rail Transit Station Type Identification Based on “Passenger Flow—Land Use—Job-Housing”

Author

Listed:
  • Hongxia Feng

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
    These authors contributed equally to this work.)

  • Yaotong Chen

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
    These authors contributed equally to this work.)

  • Jinyi Wu

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Zhenqian Zhao

    (Beijing Qinghua Tongheng Planning and Design Institute, Beijing 100080, China)

  • Yuanqing Wang

    (Key Laboratory of Transport Industry of Management, Control and Cycle Repair Technology for Traffic Network Facilities in Ecological Security Barrier Area, Chang’an University, Xi’an 710064, China)

  • Zhuoting Wang

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

Urban rail transit stations serve as pivotal hubs that facilitate the advancement of diverse economic activities. Based on different types of metro stations, the sustainable and coordinated development of public transport and land use can be achieved through rational land use planning and the rational allocation of urban infrastructure and public service facilities. Drawing upon mobile phone signaling data and land use data, this article presents a complex classification methodology for metro stations, employing the lens of “passenger flow behavior—land use structure—job-housing density” in the context of Xi’an. The stations are categorized into six distinct types, including employment-led stations with a job–housing density balance, as well as stations characterized by job–housing mismatch with a high residential density. The results indicate a low level of coupling between the passenger flow patterns of the stations and the spatial characteristics of the station areas. In addition, the spatial distributions of the stations demonstrate a significant aggregation effect in each station type, while the degree of integration between the different station types remains limited. These findings collectively suggest that the urban rail transit stations in Xi’an have not achieved complementary development, thereby reflecting a notable trend of cross-regional commuter flow in the city.

Suggested Citation

  • Hongxia Feng & Yaotong Chen & Jinyi Wu & Zhenqian Zhao & Yuanqing Wang & Zhuoting Wang, 2023. "Urban Rail Transit Station Type Identification Based on “Passenger Flow—Land Use—Job-Housing”," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15103-:d:1264111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    2. Yu, Zidong & Zhu, Xiaolin & Liu, Xintao, 2022. "Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong," Journal of Transport Geography, Elsevier, vol. 99(C).
    3. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Zhou, Yuyang & Zheng, Shuyan & Hu, Zhonghui & Chen, Yanyan, 2022. "Metro station risk classification based on smart card data: A case study in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    5. Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    6. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Li & Jingwei Li & Ziyue Yu & Siying Li & Aoyong Li, 2025. "Exploring the Relationship Between the Built Environment and Bike-Sharing Usage as a Feeder Mode Across Different Metro Station Types in Shenzhen," Land, MDPI, vol. 14(6), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    3. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
    4. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    5. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).
    7. Jiangjun Wan & Chunchi Ma & Tian Jiang & Andrew Phillips & Xiong Wu & Yanlan Wang & Ziming Wang & Ying Cao, 2024. "A spatial econometric investigation into road traffic accessibility and economic growth: insights from the Chengdu-Chongqing twin-city economic circle," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    8. Cui, Mengying & Yu, Lijie & Nie, Shaoyu & Dai, Zhe & Ge, Ying-en & Levinson, David, 2025. "How do access and spatial dependency shape metro passenger flows," Journal of Transport Geography, Elsevier, vol. 123(C).
    9. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    10. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    11. Lo, Huai-Wei & Fang, Tzu-Yi & Lin, Sheng-Wei, 2024. "Integrating technological and strategic analysis: Evaluating the key determinants of transportation sustainability in taipei Mass Rapid Transit using the Rough-Fermatean DEMATEL approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    12. Yi Peng & Xu Cui & Bingjie Yu & Runze Liu & Hong Li, 2025. "How 2D and 3D Built Environment Impact Urban Vitality: Evidence from Overhead-Level to Eye-Level Urban Form Metrics," Land, MDPI, vol. 14(5), pages 1-23, May.
    13. Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    14. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    15. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    16. Wen, Jian & Nassir, Neema & Zhao, Jinhua, 2019. "Value of demand information in autonomous mobility-on-demand systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 346-359.
    17. Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    18. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    19. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    20. Yabo Zhao & Ruiyang Chen & Tong Sun & Ying Yang & Shifa Ma & Dixiang Xie & Xiwen Zhang & Yunnan Cai, 2022. "Urbanization Influences CO 2 Emissions in the Pearl River Delta: A Perspective of the “Space of Flows”," Land, MDPI, vol. 11(8), pages 1-21, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15103-:d:1264111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.