IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269656.html
   My bibliography  Save this article

Modelling maintenance scheduling strategies for highway networks

Author

Listed:
  • Bao Tong
  • Jianwei Wang
  • Xue Wang
  • Feihao Zhou
  • Xinhua Mao
  • Yaxin Duan

Abstract

Although a wide range of literature has investigated the network-level highway maintenance plans and policies, few of them focused on the maintenance scheduling problem. This study proposes a methodology framework to model and compare two different maintenance scheduling strategies for highway networks, i.e., minimal makespan strategy (MMS) and minimal increased travel delay strategy (MITDS). We formulate MMS as a mixed integer linear programming model subject to the constraints of the quantity of manpower and the worst-first maintenance sequence. A bi-level programming model is proposed to quantify and optimize MITDS. The upper level model determines the optimal scheduling to minimize the increased traffic delays during the maintenance makespan. In the lower level, a modified day-to-day traffic assignment model is put forward to reflect the traffic evolution dynamics by simulating travelers’ route choice behaviors. A simulated annealing algorithm and augmented Lagrange algorithm are employed to solve the two proposed models, respectively. Finally, a numerical example using a highway network is developed. The two proposed strategies are tested considering different traffic demands, numbers of engineering teams, and travelers’ sensitivities to traffic congestion. The experiment results reveal that compared with MMS, MITDS extends makespan by 2 days though, it reduces the total increased travel delays by 4% and both MMS and MITDS can obtain the minimum total increased travel delays when the number of engineering teams is 6. The sensitivity analysis indicates that both the two strategies have the maximum and minimum total increased travel delays when the weight of prediction in travelers’ perception is 0.3 and 0.7, respectively. The proposed framework has the potential to provide reference in implementing highway maintenance activities reasonably.

Suggested Citation

  • Bao Tong & Jianwei Wang & Xue Wang & Feihao Zhou & Xinhua Mao & Yaxin Duan, 2022. "Modelling maintenance scheduling strategies for highway networks," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0269656
    DOI: 10.1371/journal.pone.0269656
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269656
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269656&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    2. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukang He & Tao Jia & Weibo Zheng, 2024. "Simulated annealing for centralised resource-constrained multiproject scheduling to minimise the maximal cash flow gap under different payment patterns," Annals of Operations Research, Springer, vol. 338(1), pages 115-149, July.
    2. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    3. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    4. Jens Brunner & Jonathan Bard & Rainer Kolisch, 2009. "Flexible shift scheduling of physicians," Health Care Management Science, Springer, vol. 12(3), pages 285-305, September.
    5. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    6. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    7. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    8. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part II: An Application to Audit-Staff Scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 388, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    11. Marinos Aristotelous & Andreas C. Nearchou, 2024. "An Empirical Analysis of a Set of Hybrid Heuristics for the Solution of the Resource Leveling Problem," SN Operations Research Forum, Springer, vol. 5(1), pages 1-29, March.
    12. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    13. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    14. Alireza Etminaniesfahani & Hanyu Gu & Leila Moslemi Naeni & Amir Salehipour, 2024. "An efficient relax-and-solve method for the multi-mode resource constrained project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 41-68, July.
    15. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    16. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    17. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    18. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    19. Pablo Alvarez-Campana & Felix Villafanez & Fernando Acebes & David Poza, 2024. "Simulation-based approach for Multiproject Scheduling based on composite priority rules," Papers 2406.02102, arXiv.org.
    20. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.