IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267481.html
   My bibliography  Save this article

A microenvironment prediction model for Chinese solar greenhouses based on the bond graph approach

Author

Listed:
  • Lei Zhang
  • Xingan Liu
  • Tianlai Li
  • Jianwei Ji
  • Lei Zhao

Abstract

To improve the prediction accuracy of temperature and humidity in typical Chinese solar greenhouses, this paper proposed a new longwave/shortwave radiation modeling method using bond graph. This model takes into account sun position, useful incoming solar radiation model, sky longwave radiation model, inside longwave, and shortwave radiation model. The approach solves the problems caused by underestimating the effects of longwave radiation on night temperature and relative humidity. The study found that after a period of t = 7.5 h, with the increase of sun altitude angle, the internal temperature was significantly affected by the temperature rise of outside environment on sunny day. The sun altitude angle gradually falls over a period of t = 12.5 h (beginning at 12.30 p.m.). The decline in night temperature steadily slowed after a period of t = 20.5 h. On the other hand, the temperature variation has a multi-peak distribution and the warming rate of the CSG slows down on cloudy days. Furthermore, a good agreement between the experimental and simulation data were obtained, with a maximum temperature deviation of 2°C and maximum humidity deviation of 5%. The developed model is a universal and valuable approach that can be used for greenhouse climate simulation. Furthermore, it can be used as a support system during decision-making processes to help manage Chinese solar greenhouses more efficiently, which provides several control perspectives on the low-energy greenhouse in the future. This work has also provided several control perspectives on the low energy greenhouse in the future.

Suggested Citation

  • Lei Zhang & Xingan Liu & Tianlai Li & Jianwei Ji & Lei Zhao, 2022. "A microenvironment prediction model for Chinese solar greenhouses based on the bond graph approach," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-22, May.
  • Handle: RePEc:plo:pone00:0267481
    DOI: 10.1371/journal.pone.0267481
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267481
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267481&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Zhang, Yue & Henke, Michael & Li, Yiming & Yue, Xiang & Xu, Demin & Liu, Xingan & Li, Tianlai, 2020. "High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure," Renewable Energy, Elsevier, vol. 160(C), pages 730-745.
    3. repec:plo:pone00:0231316 is not listed on IDEAS
    4. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    5. Pandey, Chanchal Kumar & Katiyar, A.K., 2011. "A comparative study of solar irradiation models on various inclined surfaces for India," Applied Energy, Elsevier, vol. 88(4), pages 1455-1459, April.
    6. Anastasia Martzopoulou & Dimitris Vafiadis & Vassilios P. Fragos, 2020. "Energy Gain in Passive Solar Greenhouses Due to CO 2 Enrichment," Energies, MDPI, vol. 13(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    2. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    3. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    4. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    5. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    6. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    7. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    8. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    9. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.
    10. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    11. Zilong Fan & Yiming Li & Lingling Jiang & Lu Wang & Tianlai Li & Xingan Liu, 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    12. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    13. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    14. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    15. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    16. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    17. Fan, Zilong & Liu, Zhiwei & Li, Youyu & Zhang, Jingfu & Tu, Gao & Ding, Tao, 2024. "New insights to boost the application potential of Chinese solar greenhouses in cold desert regions: System design and implementation," Energy, Elsevier, vol. 313(C).
    18. Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
    19. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    20. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.