Simple epidemic models with segmentation can be better than complex ones
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0262244
Download full text from publisher
References listed on IDEAS
- Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023.
"Time series analysis of COVID-19 infection curve: A change-point perspective,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
- Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2020. "Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective," Papers 2007.04553, arXiv.org.
- Rafal Baranowski & Yining Chen & Piotr Fryzlewicz, 2019. "Narrowest‐over‐threshold detection of multiple change points and change‐point‐like features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 649-672, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.
- Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
- Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
- Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
- Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024.
"Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Cambridge Working Papers in Economics 2367, Faculty of Economics, University of Cambridge.
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Janeway Institute Working Papers 2316, Faculty of Economics, University of Cambridge.
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022.
"Short-term Covid-19 forecast for latecomers,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
- Marcelo Medeiros & Alexandre Street & Davi Vallad~ao & Gabriel Vasconcelos & Eduardo Zilberman, 2020. "Short-Term Covid-19 Forecast for Latecomers," Papers 2004.07977, arXiv.org, revised Sep 2021.
- Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023.
"Testing the predictive accuracy of COVID-19 forecasts,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
- Laura Coroneo & Fabrizio Iacone & Alessia Paccagnini & Paulo Santos Monteiro, 2020. "Testing the predictive accuracy of COVID-19 forecasts," Discussion Papers 20/10, Department of Economics, University of York.
- Laura Coroneo & Fabrizio Iacone & Alessia Paccagnini & Paulo Santos Monteiro, 2021. "Testing the predictive accuracy of COVID-19 forecasts," CAMA Working Papers 2021-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Claudia Kirch & Kerstin Reckruehm, 2024. "Data segmentation for time series based on a general moving sum approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 393-421, June.
- Julia Nasiadka & Weronika Nitka & Rafa{l} Weron, 2022. "Calibration window selection based on change-point detection for forecasting electricity prices," Papers 2204.00872, arXiv.org.
- Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
- McGonigle, Euan T. & Cho, Haeran, 2023. "Robust multiscale estimation of time-average variance for time series segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Zhao, Wenbiao & Zhu, Lixing, 2024. "Detecting change structures of nonparametric regressions," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
- Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023.
"Time series analysis of COVID-19 infection curve: A change-point perspective,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
- Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2020. "Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective," Papers 2007.04553, arXiv.org.
- Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
- Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
- Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
- Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.