IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0258677.html
   My bibliography  Save this article

Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan

Author

Listed:
  • Keach Murakami
  • Seiji Shimoda
  • Yasuhiro Kominami
  • Manabu Nemoto
  • Satoshi Inoue

Abstract

This study analyzed meteorological constraints on winter wheat yield in the northern Japanese island, Hokkaido, and developed a machine learning model to predict municipality-level yields from meteorological data. Compared to most wheat producing areas, this island is characterized by wet climate owing to greater annual precipitation and abundant snowmelt water supply in spring. Based on yield statistics collected from 119 municipalities for 14 years (N = 1,516) and high-resolution surface meteorological data, correlation analyses showed that precipitation, daily minimum air temperature, and irradiance during the grain-filling period had significant effects on the yield throughout the island while the effect of snow depth in early winter and spring was dependent on sites. Using 10-d mean meteorological data within a certain period between seeding and harvest as predictor variables and one-year-leave-out cross-validation procedure, performance of machine learning models based on neural network (NN), random forest (RF), support vector machine regression (SVR), partial least squares regression (PLS), and cubist regression (CB) were compared to a multiple linear regression model (MLR) and a null model that returns an average yield of the municipality. The root mean square errors of PLS, SVR, and RF were 872, 982, and 1,024 kg ha−1 and were smaller than those of MLR (1,068 kg ha−1) and null model (1,035 kg ha−1). These models outperformed the controls in other metrics including Pearson’s correlation coefficient and Nash-Sutcliffe efficiency. Variable importance analysis on PLS indicated that minimum air temperature and precipitation during the grain-filling period had major roles in the prediction and excluding predictors in this period (i.e. yield forecast with a longer lead-time) decreased forecast performance of the models. These results were consistent with our understanding of meteorological impacts on wheat yield, suggesting usefulness of explainable machine learning in meteorological crop yield prediction under wet climate.

Suggested Citation

  • Keach Murakami & Seiji Shimoda & Yasuhiro Kominami & Manabu Nemoto & Satoshi Inoue, 2021. "Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0258677
    DOI: 10.1371/journal.pone.0258677
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258677
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0258677&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0258677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Zehui & Liu, Chao & Ganapathysubramanian, Baskar & Hayes, Dermot J. & Sarkar, Soumik, 2020. "Predicting county-scale maize yields with publicly available data," ISU General Staff Papers 202009110700001775, Iowa State University, Department of Economics.
    2. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    3. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    2. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    3. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    4. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    5. Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
    6. Karin Wolffhechel & Amanda C Hahn & Hanne Jarmer & Claire I Fisher & Benedict C Jones & Lisa M DeBruine, 2015. "Testing the Utility of a Data-Driven Approach for Assessing BMI from Face Images," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    7. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
    8. Andrea S Martinez-Vernon & James A Covington & Ramesh P Arasaradnam & Siavash Esfahani & Nicola O’Connell & Ioannis Kyrou & Richard S Savage, 2018. "An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    9. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    10. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    11. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    12. P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    14. Uwe Ligges & Sebastian Krey, 2011. "Feature clustering for instrument classification," Computational Statistics, Springer, vol. 26(2), pages 279-291, June.
    15. Arnout Van Messem & Andreas Christmann, 2010. "A review on consistency and robustness properties of support vector machines for heavy-tailed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 199-220, September.
    16. Nunes, Matthew, 2015. "Statistical Analysis of Network Data with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(b01).
    17. Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    18. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    19. Maria-Carmen García-Centeno & Román Mínguez-Salido & Raúl del Pozo-Rubio, 2021. "The Classification of Profiles of Financial Catastrophe Caused by Out-of-Pocket Payments: A Methodological Approach," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    20. Yasset Perez-Riverol & Max Kuhn & Juan Antonio Vizcaíno & Marc-Phillip Hitz & Enrique Audain, 2017. "Accurate and fast feature selection workflow for high-dimensional omics data," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.