IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256470.html
   My bibliography  Save this article

Splitting Gaussian processes for computationally-efficient regression

Author

Listed:
  • Nick Terry
  • Youngjun Choe

Abstract

Gaussian processes offer a flexible kernel method for regression. While Gaussian processes have many useful theoretical properties and have proven practically useful, they suffer from poor scaling in the number of observations. In particular, the cubic time complexity of updating standard Gaussian process models can be a limiting factor in applications. We propose an algorithm for sequentially partitioning the input space and fitting a localized Gaussian process to each disjoint region. The algorithm is shown to have superior time and space complexity to existing methods, and its sequential nature allows the model to be updated efficiently. The algorithm constructs a model for which the time complexity of updating is tightly bounded above by a pre-specified parameter. To the best of our knowledge, the model is the first local Gaussian process regression model to achieve linear memory complexity. Theoretical continuity properties of the model are proven. We demonstrate the efficacy of the resulting model on several multi-dimensional regression tasks.

Suggested Citation

  • Nick Terry & Youngjun Choe, 2021. "Splitting Gaussian processes for computationally-efficient regression," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0256470
    DOI: 10.1371/journal.pone.0256470
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256470
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256470&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    2. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    3. Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
    4. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
    5. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    6. Maria Masotti & Lin Zhang & Ethan Leng & Gregory J. Metzger & Joseph S. Koopmeiners, 2023. "A novel Bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI," Biometrics, The International Biometric Society, vol. 79(2), pages 604-615, June.
    7. Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
    8. Kleijnen, J.P.C., 2009. "Sensitivity Analysis of Simulation Models," Discussion Paper 2009-11, Tilburg University, Center for Economic Research.
    9. Antonio Candelieri & Andrea Ponti & Francesco Archetti, 2025. "Gaussian Process regression over discrete probability measures: on the non-stationarity relation between Euclidean and Wasserstein Squared Exponential Kernels," Journal of Global Optimization, Springer, vol. 92(2), pages 253-278, June.
    10. Matthew Plumlee, 2014. "Fast Prediction of Deterministic Functions Using Sparse Grid Experimental Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1581-1591, December.
    11. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    12. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    13. Scott, James G., 2012. "Benchmarking historical corporate performance," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1795-1807.
    14. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.
    15. Pulong Ma & Georgios Karagiannis & Bledar A. Konomi & Taylor G. Asher & Gabriel R. Toro & Andrew T. Cox, 2022. "Multifidelity computer model emulation with high‐dimensional output: An application to storm surge," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 861-883, August.
    16. Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
    17. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    18. Davis, Casey B. & Hans, Christopher M. & Santner, Thomas J., 2021. "Prediction of non-stationary response functions using a Bayesian composite Gaussian process," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    19. Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
    20. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.