IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0241686.html
   My bibliography  Save this article

Evaluation of classification and forecasting methods on time series gene expression data

Author

Listed:
  • Nafis Irtiza Tripto
  • Mohimenul Kabir
  • Md Shamsuzzoha Bayzid
  • Atif Rahman

Abstract

Time series gene expression data is widely used to study different dynamic biological processes. Although gene expression datasets share many of the characteristics of time series data from other domains, most of the analyses in this field do not fully leverage the time-ordered nature of the data and focus on clustering the genes based on their expression values. Other domains, such as financial stock and weather prediction, utilize time series data for forecasting purposes. Moreover, many studies have been conducted to classify generic time series data based on trend, seasonality, and other patterns. Therefore, an assessment of these approaches on gene expression data would be of great interest to evaluate their adequacy in this domain. Here, we perform a comprehensive evaluation of different traditional unsupervised and supervised machine learning approaches as well as deep learning based techniques for time series gene expression classification and forecasting on five real datasets. In addition, we propose deep learning based methods for both classification and forecasting, and compare their performances with the state-of-the-art methods. We find that deep learning based methods generally outperform traditional approaches for time series classification. Experiments also suggest that supervised classification on gene expression is more effective than clustering when labels are available. In time series gene expression forecasting, we observe that an autoregressive statistical approach has the best performance for short term forecasting, whereas deep learning based methods are better suited for long term forecasting.

Suggested Citation

  • Nafis Irtiza Tripto & Mohimenul Kabir & Md Shamsuzzoha Bayzid & Atif Rahman, 2020. "Evaluation of classification and forecasting methods on time series gene expression data," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0241686
    DOI: 10.1371/journal.pone.0241686
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241686
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241686&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0241686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    2. Bryan, Jenny, 2004. "Problems in gene clustering based on gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 44-66, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    3. Yu, Dejian & Xiang, Bo, 2024. "An ESTs detection research based on paper entity mapping: Combining scientific text modeling and neural prophet," Journal of Informetrics, Elsevier, vol. 18(4).
    4. Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
    5. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    6. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    7. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    8. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    9. Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
    10. Yinghui Huang & Hui Liu & Lin Zhang & Shen Li & Weijun Wang & Zhihong Ren & Zongkui Zhou & Xueyao Ma, 2021. "The Psychological and Behavioral Patterns of Online Psychological Help-Seekers before and during COVID-19 Pandemic: A Text Mining-Based Longitudinal Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    11. Oras Baker & Zahra Ziran & Massimo Mecella & Kasthuri Subaramaniam & Sellappan Palaniappan, 2025. "Predictive Modeling for Pandemic Forecasting: A COVID-19 Study in New Zealand and Partner Countries," IJERPH, MDPI, vol. 22(4), pages 1-22, April.
    12. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    13. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    14. Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
    15. Vladislav Bína, Jitka Bartosová, Vladimir Pribyl, 2022. "Anomaly Detection in Time Series for Smart Agriculture," International Journal of Management, Knowledge and Learning, ToKnowPress, vol. 11, pages 177-186.
    16. Natalia Turdyeva & Anna Tsvetkova & Levon Movsesyan & Alexey Porshakov & Dmitriy Chernyadyev, 2021. "Data of Sectoral Financial Flows as a High-Frequency Indicator of Economic Activity," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 28-49, June.
    17. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    18. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    19. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    20. Hasan Fallahgoul, 2020. "Inside the Mind of Investors During the COVID-19 Pandemic: Evidence from the StockTwits Data," Papers 2004.11686, arXiv.org, revised May 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0241686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.