IDEAS home Printed from
   My bibliography  Save this article

Problems in gene clustering based on gene expression data


  • Bryan, Jenny


In this work, we assess the suitability of cluster analysis for the gene grouping problem confronted with microarray data. Gene clustering is the exercise of grouping genes based on attributes, which are generally the expression levels over a number of conditions or subpopulations. The hope is that similarity with respect to expression is often indicative of similarity with respect to much more fundamental and elusive qualities, such as function. By formally defining the true gene-specific attributes as parameters, such as expected expression across the conditions, we obtain a well-defined gene clustering parameter of interest, which greatly facilitates the statistical treatment of gene clustering. We point out that genome-wide collections of expression trajectories often lack natural clustering structure, prior to ad hoc gene filtering. The gene filters in common use induce a certain circularity to most gene cluster analyses: genes are points in the attribute space, a filter is applied to depopulate certain areas of the space, and then clusters are sought (and often found!) in the "cleaned" attribute space. As a result, statistical investigations of cluster number and clustering strength are just as much a study of the stringency and nature of the filter as they are of any biological gene clusters. In the absence of natural clusters, gene clustering may still be a worthwhile exercise in data segmentation. In this context, partitions can be fruitfully encoded in adjacency matrices and the sampling distribution of such matrices can be studied with a variety of bootstrapping techniques.

Suggested Citation

  • Bryan, Jenny, 2004. "Problems in gene clustering based on gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 44-66, July.
  • Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:44-66

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:44-66. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.