IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236860.html
   My bibliography  Save this article

Estimation of COVID-19 spread curves integrating global data and borrowing information

Author

Listed:
  • Se Yoon Lee
  • Bowen Lei
  • Bani Mallick

Abstract

Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data for real-time prediction of infection trajectory for multiple countries. Because the proposed model takes advantage of borrowing information across multiple countries, it outperforms an existing individual country-based model. As fully Bayesian way has been adopted, the model provides a powerful predictive tool endowed with uncertainty quantification. Additionally, a joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify possible country-level risk factors for severe disease due to COVID-19.

Suggested Citation

  • Se Yoon Lee & Bowen Lei & Bani Mallick, 2020. "Estimation of COVID-19 spread curves integrating global data and borrowing information," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0236860
    DOI: 10.1371/journal.pone.0236860
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236860
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236860&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yisheng Li & Xihong Lin & Peter Müller, 2010. "Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 66(1), pages 70-78, March.
    2. Yaesoubi, Reza & Cohen, Ted, 2011. "Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 679-687, December.
    3. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    4. Kahm, Matthias & Hasenbrink, Guido & Lichtenberg-Fraté, Hella & Ludwig, Jost & Kschischo, Maik, 2010. "grofit: Fitting Biological Growth Curves with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Modelling > Statistical Modelling

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conceição Leal & Leonel Morgado & Teresa A. Oliveira, 2023. "Mathematical and Statistical Modelling for Assessing COVID-19 Superspreader Contagion: Analysis of Geographical Heterogeneous Impacts from Public Events," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    2. Jin, Guangyin & Ni, Xiaohan & Wei, Kun & Zhao, Jie & Zhang, Haoming & Jia, Leiming, 2025. "Will the technological singularity come soon? Modeling the dynamics of artificial intelligence development via multi-logistic growth process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    3. Ángel Berihuete & Marta Sánchez-Sánchez & Alfonso Suárez-Llorens, 2021. "A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    4. Se Yoon Lee, 2022. "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications," Mathematics, MDPI, vol. 10(6), pages 1-51, March.
    5. Christian Alemán & Christopher Busch & Alexander Ludwig & Raül Santaeulà lia-Llopis, 2020. "Evaluating the Effectiveness of Policies Against a Pandemic," Working Papers 2020-078, Human Capital and Economic Opportunity Working Group.
    6. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    7. Demetrius E. Davos & Ioannis C. Demetriou, 2022. "Convex-Concave fitting to successively updated data and its application to covid-19 analysis," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3233-3262, December.
    8. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
    9. Pelinovsky, E. & Kokoulina, M. & Epifanova, A. & Kurkin, A. & Kurkina, O. & Tang, M. & Macau, E. & Kirillin, M., 2022. "Gompertz model in COVID-19 spreading simulation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Lenk, Peter & Lee, Jangwon & Han, Dongu & Park, Jichan & Choi, Taeryon, 2024. "Hierarchical Bayesian spectral regression with shape constraints for multi-group data," Computational Statistics & Data Analysis, Elsevier, vol. 200(C).
    11. Jesus Cerquides, 2021. "A First Approach to Closeness Distributions," Mathematics, MDPI, vol. 9(23), pages 1-12, December.
    12. Stef Baas & Sander Dijkstra & Aleida Braaksma & Plom Rooij & Fieke J. Snijders & Lars Tiemessen & Richard J. Boucherie, 2021. "Real-time forecasting of COVID-19 bed occupancy in wards and Intensive Care Units," Health Care Management Science, Springer, vol. 24(2), pages 402-419, June.
    13. Daniele Lilleri & Federica Zavaglio & Elisa Gabanti & Giuseppe Gerna & Eloisa Arbustini, 2020. "Analysis of the SARS-CoV-2 epidemic in Italy: The role of local and interventional factors in the control of the epidemic," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-12, November.
    14. Dijkstra, Sander & Baas, Stef & Braaksma, Aleida & Boucherie, Richard J., 2023. "Dynamic fair balancing of COVID-19 patients over hospitals based on forecasts of bed occupancy," Omega, Elsevier, vol. 116(C).
    15. Xenikos, D.G. & Constantoudis, V., 2024. "Extended Bass model on the power-law epidemics growth and its implications on spatially heterogeneous systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    2. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    4. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    5. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    6. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    7. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    8. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    9. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    10. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    11. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    12. Harrison Katz & Liz Medina & Robert E. Weiss, 2025. "Sensitivity Analysis of Priors in the Bayesian Dirichlet Auto-Regressive Moving Average Model," Forecasting, MDPI, vol. 7(3), pages 1-19, June.
    13. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    14. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
    15. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
    16. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    17. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    18. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    19. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    20. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.