IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220061.html
   My bibliography  Save this article

Consistency and differences between centrality measures across distinct classes of networks

Author

Listed:
  • Stuart Oldham
  • Ben Fulcher
  • Linden Parkes
  • Aurina Arnatkevic̆iūtė
  • Chao Suo
  • Alex Fornito

Abstract

The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.

Suggested Citation

  • Stuart Oldham & Ben Fulcher & Linden Parkes & Aurina Arnatkevic̆iūtė & Chao Suo & Alex Fornito, 2019. "Consistency and differences between centrality measures across distinct classes of networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
  • Handle: RePEc:plo:pone00:0220061
    DOI: 10.1371/journal.pone.0220061
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220061
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220061&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingxin Estella Ye & Jin-Cheon Na & Poong Oh, 2022. "Are automated accounts driving scholarly communication on Twitter? a case study of dissemination of COVID-19 publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2151-2172, May.
    2. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Yang, Yuanxuan & Beecham, Roger & Heppenstall, Alison & Turner, Andy & Comber, Alexis, 2022. "Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Varga, Attila & Sebestyén, Tamás & Szabó, Norbert, 2021. "Az intelligens szakosodási politika gazdasági hatásainak modellezése [Economic impact assessment of smart specialization policy]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 901-929.
    6. Attila Varga & Norbert Szabó & Tamás Sebestyén, 2020. "Economic impact modelling of smart specialization policy: Which industries should prioritization target?," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1367-1388, October.
    7. Almeira, Nahuel & Perotti, Juan Ignacio & Chacoma, Andrés & Billoni, Orlando Vito, 2021. "Explosive dismantling of two-dimensional random lattices under betweenness centrality attacks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Stephany Rajeh & Marinette Savonnet & Eric Leclercq & Hocine Cherifi, 2023. "Comparative evaluation of community-aware centrality measures," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1273-1302, April.
    9. Mite Mijalkov & Joana B Pereira & Giovanni Volpe, 2020. "Delayed correlations improve the reconstruction of the brain connectome," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    10. Neelam Kaushal & Neeraj Kaushik & Brijesh Sivathanu, 2021. "Workplace ostracism in various organizations: a systematic review and bibliometric analysis," Management Review Quarterly, Springer, vol. 71(4), pages 783-818, October.
    11. Gündüç, Semra & Eryiğit, Recep, 2021. "Time dependent correlations between the probability of a node being infected and its centrality measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    12. Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Li, Shuying & Zhang, Xian & Xu, Haiyun & Fang, Shu & Garces, Edwin & Daim, Tugrul, 2020. "Measuring strategic technological strength :Patent Portfolio Model," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    14. Franken, Jonas & Reinhold, Thomas & Reichert, Lilian & Reuter, Christian, 2022. "The digital divide in state vulnerability to submarine communications cable failure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    15. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2024. "A study of the effect of influential spreaders on the different sectors of Indian market and a few foreign markets: a complex networks perspective," Journal of Computational Social Science, Springer, vol. 7(1), pages 45-85, April.
    16. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0189137 is not listed on IDEAS
    2. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    3. Sandra Cristina Oliveira & Juliana Cobre & Danilo Florentino Pereira, 2021. "A measure of reliability for scientific co-authorship networks using fuzzy logic," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4551-4563, June.
    4. Alireza Abbasi & Mahdi Jalili & Abolghasem Sadeghi-Niaraki, 2018. "Influence of network-based structural and power diversity on research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 579-590, October.
    5. Sameer Kumar & Jariah Mohd. Jan, 2013. "Mapping research collaborations in the business and management field in Malaysia, 1980–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 491-517, December.
    6. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    7. Carlo D'Ippoliti, 2021. "“Many‐Citedness”: Citations Measure More Than Just Scientific Quality," Journal of Economic Surveys, Wiley Blackwell, vol. 35(5), pages 1271-1301, December.
    8. Jungwon Yoon & Joshua SungWoo Yang & Han Woo Park, 2017. "Quintuple helix structure of Sino-Korean research collaboration in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 61-81, October.
    9. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.
    10. Chao Lu & Yingyi Zhang & Yong‐Yeol Ahn & Ying Ding & Chenwei Zhang & Dandan Ma, 2020. "Co‐contributorship network and division of labor in individual scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1162-1178, October.
    11. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    12. Mahmoud Elmezain & Ebtesam A. Othman & Hani M. Ibrahim, 2021. "Temporal Degree-Degree and Closeness-Closeness: A New Centrality Metrics for Social Network Analysis," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    13. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.
    14. Guijie Zhang & Luning Liu & Yuqiang Feng & Zhen Shao & Yongli Li, 2014. "Cext-N index: a network node centrality measure for collaborative relationship distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 291-307, October.
    15. He, Bing & Ding, Ying & Tang, Jie & Reguramalingam, Vignesh & Bollen, Johan, 2013. "Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective," Journal of Informetrics, Elsevier, vol. 7(1), pages 117-128.
    16. Yongjun Zhu & Lihong Quan & Pei‐Ying Chen & Meen Chul Kim & Chao Che, 2023. "Predicting coauthorship using bibliographic network embedding," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(4), pages 388-401, April.
    17. Julia Müller & Thorsten Upmann, 2017. "Eigenvalue Productivity: Measurement of Individual Contributions in Teams," CESifo Working Paper Series 6679, CESifo.
    18. Witting Antje, 2015. "Measuring the Use of Knowledge in Policy Development," Central European Journal of Public Policy, Sciendo, vol. 9(2), pages 54-62, December.
    19. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    20. Saikou Y. Diallo & Christopher J. Lynch & Ross Gore & Jose J. Padilla, 2016. "Identifying key papers within a journal via network centrality measures," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1005-1020, June.
    21. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.