IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201482.html
   My bibliography  Save this article

Influence of habitat suitability and sex-related detectability on density and population size estimates of habitat-specialist warblers

Author

Listed:
  • Óscar Frías
  • Luis M Bautista
  • Francisco V Dénes
  • Jesús A Cuevas
  • Félix Martínez
  • Guillermo Blanco

Abstract

Knowledge about the population size and trends of common bird species is crucial for setting conservation priorities and management actions. Multi-species large-scale monitoring schemes have often provided such estimates relying on extrapolation of relative abundances in particular habitats to large-scale areas. Here we show an alternative to inference-rich predictive models, proposing methods to deal with caveats of population size estimations in habitat-specialist species, reed warblers (Acrocephalus scirpaceus and Acrocephalus arundinaceus). Reed warblers were only found in pure reedbeds within riparian woodlands or in riparian vegetation scattered within or around reedbed patches, as expected according to their habitat specialization. The proportion of individuals located in reedbed associated with lotic and lentic waters differed between species, and no reed warbler was recorded in reedbed located along dry streams. This indicates that microhabitat features or their effects on reedbed structure and other factors made a proportion of the apparently available habitat unsuitable for both warbler species. Most warblers detected were males performing territorial singing (females seldom sing and do not perform elaborate territorial song, and are undistinguishable from males by plumage). The regional population sizes of the warbler species (~4000 individuals of A. scirpaceus and ~ 1000 individuals of A. arundinaceus) were much smaller than those estimated for the same area by transforming relative abundance obtained at a national scale to population size through extrapolation by habitat at a regional scale. These results highlight the importance of considering the habitat actually used and its suitability, the manner of sex-related detection, population sex-ratio and their interactions in population estimates. Ideally, the value of predictive methods to estimate population size of common species should be tested before conducting large-scale monitoring, rather than a posteriori. Although logistically challenging, this can be achieved by designing monitoring programs including an intensive sampling of abundance in ad hoc reference areas of variable size.

Suggested Citation

  • Óscar Frías & Luis M Bautista & Francisco V Dénes & Jesús A Cuevas & Félix Martínez & Guillermo Blanco, 2018. "Influence of habitat suitability and sex-related detectability on density and population size estimates of habitat-specialist warblers," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-14, July.
  • Handle: RePEc:plo:pone00:0201482
    DOI: 10.1371/journal.pone.0201482
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201482
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201482&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    2. Tamara S. Wilson & Benjamin M. Sleeter & Rachel R. Sleeter & Christopher E. Soulard, 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach," Land, MDPI, vol. 3(2), pages 1-28, April.
    3. Auriel M. V. Fournier & R. Randy Wilson & Jeffrey S. Gleason & Evan M. Adams & Janell M. Brush & Robert J. Cooper & Stephen J. DeMaso & Melanie J. L. Driscoll & Peter C. Frederick & Patrick G. R. Jodi, 2023. "Structured Decision Making to Prioritize Regional Bird Monitoring Needs," Interfaces, INFORMS, vol. 53(3), pages 207-217, May.
    4. Wang, Haoluan, 2017. "Land Conservation for Open Space: The Impact of Neighbors and the Natural Environment," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258125, Agricultural and Applied Economics Association.
    5. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    6. Shirley Saenz & Tomas Walschburger & Juan Carlos González & Jorge León & Bruce McKenney & Joseph Kiesecker, 2013. "A Framework for Implementing and Valuing Biodiversity Offsets in Colombia: A Landscape Scale Perspective," Sustainability, MDPI, vol. 5(12), pages 1-27, November.
    7. Iritie, Jean-Jacques, 2015. "Economic Growth, Biodiversity and Conservation Policies in Africa: an Overview," MPRA Paper 62005, University Library of Munich, Germany.
    8. Zhouqiao Ren & Wanxin Zhan & Qiaobing Yue & Jianhua He, 2020. "Prioritizing Agricultural Patches for Reforestation to Improve Connectivity of Habitat Conservation Areas: A Guide to Grain-to-Green Project," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    9. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    10. Michael A. Wulder & Jeffrey A. Cardille & Joanne C. White & Bronwyn Rayfield, 2018. "Context and Opportunities for Expanding Protected Areas in Canada," Land, MDPI, vol. 7(4), pages 1-21, November.
    11. Robert F. Baldwin & Nakisha T. Fouch, 2018. "Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges," Land, MDPI, vol. 7(4), pages 1-12, October.
    12. John A. Gallo & Amanda T. Lombard & Richard M. Cowling, 2022. "Conservation Planning for Action: End-User Engagement in the Development and Dual-Centric Weighting of a Spatial Decision Support System," Land, MDPI, vol. 12(1), pages 1-14, December.
    13. H. K. Millington & J. E. Lovell & C. A. K. Lovell, 2013. "Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health," CEPA Working Papers Series WP072013, School of Economics, University of Queensland, Australia.
    14. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    15. Patricio Sarmiento-Mateos & Cecilia Arnaiz-Schmitz & Cristina Herrero-Jáuregui & Francisco D. Pineda & María F. Schmitz, 2019. "Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    16. Cho, Seong-Hoon & Kim, Taeyoung & Larson, Eric R. & Armsworth, Paul R., 2017. "Economies of scale in forestland acquisition costs for nature conservation," Forest Policy and Economics, Elsevier, vol. 75(C), pages 73-82.
    17. Iritié, Bi Goli Jean Jacques, 2015. "Economic growth and biodiversity: An overview. Conservation policies in Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8(2), pages 196-208.
    18. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    19. Brad H McRae & Sonia A Hall & Paul Beier & David M Theobald, 2012. "Where to Restore Ecological Connectivity? Detecting Barriers and Quantifying Restoration Benefits," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
    20. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.