IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0195927.html
   My bibliography  Save this article

Modeling an enhanced ridesharing system with meet points and time windows

Author

Listed:
  • Xin Li
  • Sangen Hu
  • Wenbo Fan
  • Kai Deng

Abstract

With the rising of e-hailing services in urban areas, ride sharing is becoming a common mode of transportation. This paper presents a mathematical model to design an enhanced ridesharing system with meet points and users’ preferable time windows. The introduction of meet points allows ridesharing operators to trade off the benefits of saving en-route delays and the cost of additional walking for some passengers to be collectively picked up or dropped off. This extension to the traditional door-to-door ridesharing problem brings more operation flexibility in urban areas (where potential requests may be densely distributed in neighborhood), and thus could achieve better system performance in terms of reducing the total travel time and increasing the served passengers. We design and implement a Tabu-based meta-heuristic algorithm to solve the proposed mixed integer linear program (MILP). To evaluate the validation and effectiveness of the proposed model and solution algorithm, several scenarios are designed and also resolved to optimality by CPLEX. Results demonstrate that (i) detailed route plan associated with passenger assignment to meet points can be obtained with en-route delay savings; (ii) as compared to CPLEX, the meta-heuristic algorithm bears the advantage of higher computation efficiency and produces good quality solutions with 8%~15% difference from the global optima; and (iii) introducing meet points to ridesharing system saves the total travel time by 2.7%-3.8% for small-scale ridesharing systems. More benefits are expected for ridesharing systems with large size of fleet. This study provides a new tool to efficiently operate the ridesharing system, particularly when the ride sharing vehicles are in short supply during peak hours. Traffic congestion mitigation will also be expected.

Suggested Citation

  • Xin Li & Sangen Hu & Wenbo Fan & Kai Deng, 2018. "Modeling an enhanced ridesharing system with meet points and time windows," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0195927
    DOI: 10.1371/journal.pone.0195927
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195927
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195927&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0195927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marius Solomon & Alain Chalifour & Jacques Desrosiers & Jacques Boisvert, 1992. "An Application of Vehicle-Routing Methodology to Large-Scale Larvicide Control Programs," Interfaces, INFORMS, vol. 22(3), pages 88-99, June.
    2. Julien Bramel & David Simchi-Levi, 1995. "A Location Based Heuristic for General Routing Problems," Operations Research, INFORMS, vol. 43(4), pages 649-660, August.
    3. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2015. "The load-dependent vehicle routing problem and its pick-up and delivery extension," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 158-181.
    4. Irina Ioachim & Jacques Desrosiers & Yvan Dumas & Marius M. Solomon & Daniel Villeneuve, 1995. "A Request Clustering Algorithm for Door-to-Door Handicapped Transportation," Transportation Science, INFORMS, vol. 29(1), pages 63-78, February.
    5. Harold K. Rappoport & Laurence S. Levy & Bruce L. Golden & Katherine J. Toussaint, 1992. "A Planning Heuristic for Military Airlift," Interfaces, INFORMS, vol. 22(3), pages 73-87, June.
    6. Paolo Toth & Daniele Vigo, 1997. "Heuristic Algorithms for the Handicapped Persons Transportation Problem," Transportation Science, INFORMS, vol. 31(1), pages 60-71, February.
    7. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    2. Shaheen, Susan & Darling, Wesley & Broader, Jacquelyn & Cohen, Adam, 2021. "Understanding Curb Management and Targeted Incentive Policies to Increase Transportation Network Company Pooling and Public Transit Linkages," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6gz9w0v9, Institute of Transportation Studies, UC Berkeley.
    3. Sepide Lotfi & Khaled Abdelghany, 2022. "Ride matching and vehicle routing for on-demand mobility services," Journal of Heuristics, Springer, vol. 28(3), pages 235-258, June.
    4. Lei Zhu & Zhouqiao Zhao & Guoyuan Wu, 2021. "Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    5. Yi, Xu & Lian, Feng & Yang, Zhongzhen, 2022. "Research on commuters’ carpooling behavior in the mobile internet context," Transport Policy, Elsevier, vol. 126(C), pages 14-25.
    6. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    2. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    3. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    4. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    5. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    6. Jinming Liu & Guoting Zhang & Lining Xing & Weihua Qi & Yingwu Chen, 2022. "An Exact Algorithm for Multi-Task Large-Scale Inter-Satellite Routing Problem with Time Windows and Capacity Constraints," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
    7. Maria Cremers & Willem Klein Haneveld & Maarten Vlerk, 2009. "A two-stage model for a day-ahead paratransit planning problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(2), pages 323-341, May.
    8. Dessouky, Maged M. & Ordóñez, Fernando & Quadrifoglio, Luca, 2005. "Productivity and Cost-Effectiveness of Demand Responsive Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qj1d5s0, Institute of Transportation Studies, UC Berkeley.
    9. Barbarosoglu, Gulay & Ozdamar, Linet & Cevik, Ahmet, 2002. "An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations," European Journal of Operational Research, Elsevier, vol. 140(1), pages 118-133, July.
    10. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    11. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    12. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    13. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    14. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    15. repec:dgr:rugsom:07010 is not listed on IDEAS
    16. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    17. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    18. Cremers, Marloes & Klein Haneveld, Wim & van der Vlerk, Maarten, 2007. "A dynamic day-ahead paratransit planning problem," Research Report 07010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    19. K Fagerholt & B A Foss & O J Horgen, 2009. "A decision support model for establishing an air taxi service: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1173-1182, September.
    20. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    21. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0195927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.