IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170082.html
   My bibliography  Save this article

Measuring Physical Activity with Hip Accelerometry among U.S. Older Adults: How Many Days Are Enough?

Author

Listed:
  • Masha Kocherginsky
  • Megan Huisingh-Scheetz
  • William Dale
  • Diane S Lauderdale
  • Linda Waite

Abstract

Introduction: Accelerometers are increasingly used in research. Four to 7 days of monitoring is preferred to estimate average activity but may be burdensome for older adults. We aimed to investigate: 1) 7-day accelerometry protocol adherence, 2) demographic predictors of adherence, 3) day of the week effect, and 4) average activity calculated from 7 versus fewer days among older adults. Methods: We used the 2003–2006 older adult hip accelerometry data from the National Health and Nutrition Examination Survey (NHANES) sample. We determined proportions with 1–7 valid (10–20 hours) wear days and identified wear day correlates using ordinal logistic regression. We determined the day of week effect on 5 accelerometry measures (counts per minute, CPM; % sedentary behavior; % light-lifestyle activity; % moderate-vigorous activity, MVPA; total activity counts) using multivariate linear regression and compared averages estimated over 2 or 3 versus 7 days using correlations, linear regression, and Bland-Altman plots. Results: Among 2,208 participants aged 65+, 85% of participants had ≥2 and 44% had 7 valid wear days. Increasing age (p = 0.01) and non-white race (p

Suggested Citation

  • Masha Kocherginsky & Megan Huisingh-Scheetz & William Dale & Diane S Lauderdale & Linda Waite, 2017. "Measuring Physical Activity with Hip Accelerometry among U.S. Older Adults: How Many Days Are Enough?," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0170082
    DOI: 10.1371/journal.pone.0170082
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170082
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170082&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    2. Lin L. & Hedayat A. S. & Sinha B. & Yang M., 2002. "Statistical Methods in Assessing Agreement: Models, Issues, and Tools," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 257-270, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Berk{e}sewicz & Herman Cherniaiev & Robert Pater, 2021. "Estimating the number of entities with vacancies using administrative and online data," Papers 2106.03263, arXiv.org.
    2. J. Michael Brick & Michael E. Jones, 2008. "Propensity to respond and nonresponse bias," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 51-73.
    3. Jose M. Jimenez-Olmedo & Alfonso Penichet-Tomas & Basilio Pueo & Lamberto Villalon-Gasch, 2023. "Reliability of ADR Jumping Photocell: Comparison of Beam Cut at Forefoot and Midfoot," IJERPH, MDPI, vol. 20(11), pages 1-13, May.
    4. Jacques Muthusi & Samuel Mwalili & Peter Young, 2019. "%svy_logistic_regression: A generic SAS macro for simple and multiple logistic regression and creating quality publication-ready tables using survey or non-survey data," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    5. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    6. Fenton, Alex, 2013. "Small-area measures of income poverty," LSE Research Online Documents on Economics 58053, London School of Economics and Political Science, LSE Library.
    7. repec:cep:sticas:/173 is not listed on IDEAS
    8. Mei‐Chih Meg Tseng & Yi‐Ping Lin & Fu‐Chang Hu & Tsun‐Jen Cheng, 2013. "Risks Perception of Electromagnetic Fields in Taiwan: The Influence of Psychopathology and the Degree of Sensitivity to Electromagnetic Fields," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2002-2012, November.
    9. Raphael Nishimura & James Wagner & Michael Elliott, 2016. "Alternative Indicators for the Risk of Non-response Bias: A Simulation Study," International Statistical Review, International Statistical Institute, vol. 84(1), pages 43-62, April.
    10. Camelia Herman & Colleen M. Leonard & Perpetua Uhomoibhi & Mark Maire & Delynn Moss & Uwem Inyang & Ado Abubakar & Abiodun Ogunniyi & Nwando Mba & Stacie M. Greby & McPaul I. Okoye & Nnaemeka C. Iriem, 2023. "Non-falciparum malaria infection and IgG seroprevalence among children under 15 years in Nigeria, 2018," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Elijah O. Onsomu & DaKysha Moore & Benta A. Abuya & Peggy Valentine & Vanessa Duren-Winfield, 2013. "Importance of the Media in Scaling-Up HIV Testing in Kenya," SAGE Open, , vol. 3(3), pages 21582440134, July.
    12. Vinas-Forcade, Jennifer & Seijas, María Noé, 2021. "To teach or not to teach: Negative selection into the teaching profession in Uruguay," International Journal of Educational Development, Elsevier, vol. 84(C).
    13. Zhongqi Fan & Amy M. Yang & Marcus Lehr & Ana B. Ronan & Ryan B. Simpson & Kimberly H. Nguyen & Elena N. Naumova & Naglaa H. El-Abbadi, 2024. "Food Insecurity across Age Groups in the United States during the COVID-19 Pandemic," IJERPH, MDPI, vol. 21(8), pages 1-19, August.
    14. Lenis, David & Ackerman, Benjamin & Stuart, Elizabeth A., 2018. "Measuring model misspecification: Application to propensity score methods with complex survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 48-57.
    15. Sofia Gil-Clavel & Emilio Zagheni & Valeria Bordone, 2022. "Close Social Networks Among Older Adults: The Online and Offline Perspectives," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 1111-1135, June.
    16. Matthew R. Williams & Terrance D. Savitsky, 2021. "Uncertainty Estimation for Pseudo‐Bayesian Inference Under Complex Sampling," International Statistical Review, International Statistical Institute, vol. 89(1), pages 72-107, April.
    17. Jeanna Parsons Leigh & Kirsten Fiest & Rebecca Brundin-Mather & Kara Plotnikoff & Andrea Soo & Emma E Sypes & Liam Whalen-Browne & Sofia B Ahmed & Karen E A Burns & Alison Fox-Robichaud & Shelly Kupsc, 2020. "A national cross-sectional survey of public perceptions of the COVID-19 pandemic: Self-reported beliefs, knowledge, and behaviors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    18. Wang, Jianqiang C., 2012. "Sample distribution function based goodness-of-fit test for complex surveys," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 664-679.
    19. Liu, Chia & Olamijuwon, Emmanuel, 2024. "The link between intimate partner violence and spousal resource inequality in lower- and middle-income countries," Social Science & Medicine, Elsevier, vol. 345(C).
    20. Alejandro Aybar-Flores & Alvaro Talavera & Elizabeth Espinoza-Portilla, 2023. "Predicting the HIV/AIDS Knowledge among the Adolescent and Young Adult Population in Peru: Application of Quasi-Binomial Logistic Regression and Machine Learning Algorithms," IJERPH, MDPI, vol. 20(7), pages 1-29, March.
    21. Joseph R Starnes & Chiara Di Gravio & Rebecca Irlmeier & Ryan Moore & Vincent Okoth & Ash Rogers & Daniele J Ressler & Troy D Moon, 2021. "Characterizing multidimensional poverty in Migori County, Kenya and its association with depression," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.