IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0165212.html
   My bibliography  Save this article

Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau

Author

Listed:
  • Xiaoying Bao
  • Xiaoxue Zhu
  • Xiaofeng Chang
  • Shiping Wang
  • Burenbayin Xu
  • Caiyun Luo
  • Zhenhua Zhang
  • Qi Wang
  • Yichao Rui
  • Xiaoying Cui

Abstract

Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow.

Suggested Citation

  • Xiaoying Bao & Xiaoxue Zhu & Xiaofeng Chang & Shiping Wang & Burenbayin Xu & Caiyun Luo & Zhenhua Zhang & Qi Wang & Yichao Rui & Xiaoying Cui, 2016. "Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
  • Handle: RePEc:plo:pone00:0165212
    DOI: 10.1371/journal.pone.0165212
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165212
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0165212&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0165212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiqi Luo & Shiqiang Wan & Dafeng Hui & Linda L. Wallace, 2001. "Acclimatization of soil respiration to warming in a tall grass prairie," Nature, Nature, vol. 413(6856), pages 622-625, October.
    2. Walter C. Oechel & George L. Vourlitis & Steven J. Hastings & Rommel C. Zulueta & Larry Hinzman & Douglas Kane, 2000. "Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming," Nature, Nature, vol. 406(6799), pages 978-981, August.
    3. W. Knorr & I. C. Prentice & J. I. House & E. A. Holland, 2005. "Long-term sensitivity of soil carbon turnover to warming," Nature, Nature, vol. 433(7023), pages 298-301, January.
    4. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    5. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Francioni & Paride D’Ottavio & Roberto Lai & Laura Trozzo & Katarina Budimir & Lucia Foresi & Ayaka Wenhong Kishimoto-Mo & Nora Baldoni & Marina Allegrezza & Giulio Tesei & Marco Toderi, 2019. "Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands," Agriculture, MDPI, vol. 9(8), pages 1-12, July.
    2. Zeqin Liu & Shujuan Li & Ning Liu & Guoqin Huang & Quan Zhou, 2022. "Soil Microbial Community Driven by Soil Moisture and Nitrogen in Milk Vetch ( Astragalus sinicus L.)–Rapeseed ( Brassica napus L.) Intercropping," Agriculture, MDPI, vol. 12(10), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    2. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    3. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    4. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    6. Sierra, J. & Brisson, N. & Ripoche, D. & Déqué, M., 2010. "Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario," Ecological Modelling, Elsevier, vol. 221(23), pages 2850-2858.
    7. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    8. Helen Ding & Silvia Silvestri & Aline Chiabai & Paulo A.L.D. Nunes, 2010. "A Hybrid Approach to the Valuation of Climate Change Effects on Ecosystem Services: Evidence from the European Forests," Working Papers 2010.50, Fondazione Eni Enrico Mattei.
    9. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Giuseppe Badagliacca & Maurizio Romeo & Emilio Lo Presti & Antonio Gelsomino & Michele Monti, 2020. "Factors Governing Total and Permanganate Oxidizable C Pools in Agricultural Soils from Southern Italy," Agriculture, MDPI, vol. 10(4), pages 1-22, April.
    11. Smyth, C.E. & Kurz, W.A. & Trofymow, J.A., 2011. "Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3," Ecological Modelling, Elsevier, vol. 222(5), pages 1080-1091.
    12. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    13. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    14. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    15. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    16. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    17. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    18. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    19. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    20. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0165212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.