IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0158742.html
   My bibliography  Save this article

Market Confidence Predicts Stock Price: Beyond Supply and Demand

Author

Listed:
  • Xiao-Qian Sun
  • Hua-Wei Shen
  • Xue-Qi Cheng
  • Yuqing Zhang

Abstract

Stock price prediction is an important and challenging problem in stock market analysis. Existing prediction methods either exploit autocorrelation of stock price and its correlation with the supply and demand of stock, or explore predictive indictors exogenous to stock market. In this paper, using transaction record of stocks with identifier of traders, we introduce an index to characterize market confidence, i.e., the ratio of the number of traders who is active in two successive trading days to the number of active traders in a certain trading day. Strong Granger causality is found between the index of market confidence and stock price. We further predict stock price by incorporating the index of market confidence into a neural network based on time series of stock price. Experimental results on 50 stocks in two Chinese Stock Exchanges demonstrate that the accuracy of stock price prediction is significantly improved by the inclusion of the market confidence index. This study sheds light on using cross-day trading behavior to characterize market confidence and to predict stock price.

Suggested Citation

  • Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Yuqing Zhang, 2016. "Market Confidence Predicts Stock Price: Beyond Supply and Demand," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0158742
    DOI: 10.1371/journal.pone.0158742
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158742
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0158742&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0158742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manolis Kavussanos & Everton Dockery, 2001. "A multivariate test for stock market efficiency: the case of ASE," Applied Financial Economics, Taylor & Francis Journals, vol. 11(5), pages 573-579.
    2. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
    3. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    4. Zhi-Qiang Jiang & Wen-Jie Xie & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & W. -X. Zhou, 2012. "Trading networks, abnormal motifs and stock manipulation," Papers 1301.0007, arXiv.org.
    5. Xiao-Qian Sun & Xue-Qi Cheng & Hua-Wei Shen & Zhao-Yang Wang, 2011. "Distinguishing manipulated stocks via trading network analysis," Papers 1110.2260, arXiv.org.
    6. Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Zhao-Yang Wang, 2012. "Degree-Strength Correlation Reveals Anomalous Trading Behavior," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    7. Sun, Xiao-Qian & Cheng, Xue-Qi & Shen, Hua-Wei & Wang, Zhao-Yang, 2011. "Distinguishing manipulated stocks via trading network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3427-3434.
    8. Gopikrishnan, P. & Plerou, V. & Gabaix, X. & Amaral, L.A.N. & Stanley, H.E., 2001. "Price fluctuations and market activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 137-143.
    9. Zheludev, Ilya & Smith, Robert & Aste, Tomaso, 2014. "When can social media lead financial markets?," LSE Research Online Documents on Economics 57376, London School of Economics and Political Science, LSE Library.
    10. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    11. Bessembinder, Hendrik & Seguin, Paul J, 1992. "Futures-Trading Activity and Stock Price Volatility," Journal of Finance, American Finance Association, vol. 47(5), pages 2015-2034, December.
    12. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    13. Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
    14. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    15. V. Plerou & P. Gopikrishnan & X. Gabaix & L. A. N. Amaral & H. E. Stanley, 2001. "Price fluctuations, market activity and trading volume," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 262-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fa-Bin Shi & Xiao-Qian Sun & Jin-Hua Gao & Li Xu & Hua-Wei Shen & Xue-Qi Cheng, 2019. "Anomaly detection in Bitcoin market via price return analysis," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    2. Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
    3. Sun, Xiao-Qian & Cheng, Xue-Qi & Shen, Hua-Wei & Wang, Zhao-Yang, 2011. "Distinguishing manipulated stocks via trading network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3427-3434.
    4. Pasquale, Maria & Renò, Roberto, 2005. "Statistical properties of trading volume depending on size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 518-528.
    5. Andria, Joseph & di Tollo, Giacomo & Kalda, Jaan, 2022. "The predictive power of power-laws: An empirical time-arrow based investigation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    7. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
    8. Fa-Bin Shi & Xiao-Qian Sun & Jin-Hua Gao & Li Xu & Hua-Wei Shen & Xue-Qi Cheng, 2019. "Anomaly detection in Bitcoin market via price return analysis," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    9. Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi & Zhang, Yuqing, 2017. "Detecting anomalous traders using multi-slice network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 1-9.
    10. Shi, Fa-Bin & Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi, 2019. "Detect colluded stock manipulation via clique in trading network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 565-571.
    11. Han, Rui-Qi & Li, Ming-Xia & Chen, Wei & Zhou, Wei-Xing & Stanley, H. Eugene, 2019. "Structural properties of statistically validated empirical information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 747-756.
    12. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
    13. Bo Qian & Khaled Rasheed, 2010. "Foreign exchange market prediction with multiple classifiers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 271-284.
    14. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    15. Taisei Kaizoji, 2013. "Modelling of Stock Returns and Trading Volume," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 147-155, July.
    16. Zhi-Qiang Jiang & Wen-Jie Xie & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & W. -X. Zhou, 2012. "Trading networks, abnormal motifs and stock manipulation," Papers 1301.0007, arXiv.org.
    17. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    18. Olkhov, Victor, 2019. "Econophysics of Asset Price, Return and Multiple Expectations," MPRA Paper 91587, University Library of Munich, Germany.
    19. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    20. Vygintas Gontis, 2021. "Order flow in the financial markets from the perspective of the Fractional L\'evy stable motion," Papers 2105.02057, arXiv.org, revised Nov 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0158742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.