IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0140163.html
   My bibliography  Save this article

Effects of Initial Values and Convergence Criterion in the Two-Parameter Logistic Model When Estimating the Latent Distribution in BILOG-MG 3

Author

Listed:
  • Ingo W Nader
  • Ulrich S Tran
  • Martin Voracek

Abstract

Parameters of the two-parameter logistic model are generally estimated via the expectation-maximization algorithm, which improves initial values for all parameters iteratively until convergence is reached. Effects of initial values are rarely discussed in item response theory (IRT), but initial values were recently found to affect item parameters when estimating the latent distribution with full non-parametric maximum likelihood. However, this method is rarely used in practice. Hence, the present study investigated effects of initial values on item parameter bias and on recovery of item characteristic curves in BILOG-MG 3, a widely used IRT software package. Results showed notable effects of initial values on item parameters. For tighter convergence criteria, effects of initial values decreased, but item parameter bias increased, and the recovery of the latent distribution worsened. For practical application, it is advised to use the BILOG default convergence criterion with appropriate initial values when estimating the latent distribution from data.

Suggested Citation

  • Ingo W Nader & Ulrich S Tran & Martin Voracek, 2015. "Effects of Initial Values and Convergence Criterion in the Two-Parameter Logistic Model When Estimating the Latent Distribution in BILOG-MG 3," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-14, October.
  • Handle: RePEc:plo:pone00:0140163
    DOI: 10.1371/journal.pone.0140163
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140163
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0140163&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0140163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    2. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    3. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    4. Arielle Marks‐Anglin & Chongliang Luo & Jin Piao & Mary Beth Connolly Gibbons & Christopher H. Schmid & Jing Ning & Yong Chen, 2022. "EMBRACE: An EM‐based bias reduction approach through Copas‐model estimation for quantifying the evidence of selective publishing in network meta‐analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 754-765, June.
    5. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.
    6. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    7. Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
    8. Cafarelli Ryan & Rigdon Christopher J. & Rigdon Steven E., 2012. "Models for Third Down Conversion in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-26, October.
    9. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    10. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    11. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    12. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    13. Alexander Robitzsch, 2023. "Linking Error in the 2PL Model," J, MDPI, vol. 6(1), pages 1-27, January.
    14. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    15. Thiel, Hendrik & Thomsen, Stephan L., 2013. "Noncognitive skills in economics: Models, measurement, and empirical evidence," Research in Economics, Elsevier, vol. 67(2), pages 189-214.
    16. Norman Cliff, 1989. "Ordinal consistency and ordinal true scores," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 75-91, March.
    17. W. Nicewander, 1990. "A latent-trait based reliability estimate and upper bound," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 65-74, March.
    18. Tim Kaiser & Luis Oberrauch & Günther Seeber, 2020. "Measuring economic competence of secondary school students in Germany," The Journal of Economic Education, Taylor & Francis Journals, vol. 51(3-4), pages 227-242, August.
    19. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    20. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0140163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.