IDEAS home Printed from
   My bibliography  Save this article

Models for Third Down Conversion in the National Football League


  • Cafarelli Ryan

    (Southern Illinois University Edwardsville)

  • Rigdon Christopher J.

    (Southern Illinois UniversityEdwardsville)

  • Rigdon Steven E.

    (Saint Louis University)


Several models are proposed for the probability of converting a third down attempt in the National Football League. The probability, which can depend on the number of yards to go, the strength of the offense, and the strength of the defense, leads to a logistic regression. We approach the problem through a hierarchical Bayes model and estimate parameters by using Markov chain Monte Carlo (MCMC). This MCMC estimation in the context of a hierarchical Bayes model may be relevant in other sports situations where a probability depends on the difference of strengths of the two teams. We find that the statistic "third-down conversion rate" to be a nearly meaningless measure of the efficiency of an offense. Even when this is adjusted for yards to go for a first down, there is little evidence that teams differ in their ability to achieve a first down on a third down conversion.

Suggested Citation

  • Cafarelli Ryan & Rigdon Christopher J. & Rigdon Steven E., 2012. "Models for Third Down Conversion in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-26, October.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:1

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Steven Rigdon & Robert Tsutakawa, 1983. "Parameter estimation in latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 567-574, December.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.