IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0139911.html
   My bibliography  Save this article

Pricing a Protest: Forecasting the Dynamics of Civil Unrest Activity in Social Media

Author

Listed:
  • Brian J Goode
  • Siddharth Krishnan
  • Michael Roan
  • Naren Ramakrishnan

Abstract

Online social media activity can often be a precursor to disruptive events such as protests, strikes, and “occupy” movements. We have observed that such civil unrest can galvanize supporters through social networks and help recruit activists to their cause. Understanding the dynamics of social network cascades and extrapolating their future growth will enable an analyst to detect or forecast major societal events. Existing work has primarily used structural and temporal properties of cascades to predict their future behavior. But factors like societal pressure, alignment of individual interests with broader causes, and perception of expected benefits also affect protest participation in social media. Here we develop an analysis framework using a differential game theoretic approach to characterize the cost of participating in a cascade, and demonstrate how we can combine such cost features with classical properties to forecast the future behavior of cascades. Using data from Twitter, we illustrate the effectiveness of our models on the “Brazilian Spring” and Venezuelan protests that occurred in June 2013 and November 2013, respectively. We demonstrate how our framework captures both qualitative and quantitative aspects of how these uprisings manifest through the lens of tweet volume on Twitter social media.

Suggested Citation

  • Brian J Goode & Siddharth Krishnan & Michael Roan & Naren Ramakrishnan, 2015. "Pricing a Protest: Forecasting the Dynamics of Civil Unrest Activity in Social Media," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-25, October.
  • Handle: RePEc:plo:pone00:0139911
    DOI: 10.1371/journal.pone.0139911
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139911
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0139911&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0139911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huina Mao & Scott Counts & Johan Bollen, 2011. "Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data," Papers 1112.1051, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    2. Eric. W. K. See-To & Yang Yang, 2017. "Market sentiment dispersion and its effects on stock return and volatility," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 283-296, August.
    3. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    4. Sushant Chari & Purva Hegde Desai & Nilesh Borde & Babu George, 2023. "Aggregate News Sentiment and Stock Market Returns in India," JRFM, MDPI, vol. 16(8), pages 1-18, August.
    5. Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
    6. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    7. Qihui Xie & Yanan Xue, 2022. "The Prediction of Public Risk Perception by Internal Characteristics and External Environment: Machine Learning on Big Data," IJERPH, MDPI, vol. 19(15), pages 1-20, August.
    8. Alexander Gilgur & Jose Emmanuel Ramirez-Marquez, 2020. "Using Deductive Reasoning to Identify Unhappy Communities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 581-605, November.
    9. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
    10. Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).
    11. Thierry Warin & Nathalie De Marcellis-Warin & William Sanger & Bertrand Nembot & Venus Hosseinali Mirza, 2015. "Corporate reputation and social media: a game theory approach," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 9(1), pages 1-22.
    12. Ali Asgarov, 2023. "Predicting Financial Market Trends using Time Series Analysis and Natural Language Processing," Papers 2309.00136, arXiv.org.
    13. repec:men:wpaper:57_2015 is not listed on IDEAS
    14. Heleen Brans & Bert Scholtens, 2020. "Under his thumb the effect of president Donald Trump’s Twitter messages on the US stock market," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-11, March.
    15. Justina Deveikyte & Helyette Geman & Carlo Piccari & Alessandro Provetti, 2020. "A Sentiment Analysis Approach to the Prediction of Market Volatility," Papers 2012.05906, arXiv.org.
    16. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    17. Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
    18. Xian Zhuo & Felix Irresberger & Denefa Bostandzic, 2024. "How are texts analyzed in blockchain research? A systematic literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    19. Suppawong Tuarob & Poom Wettayakorn & Ponpat Phetchai & Siripong Traivijitkhun & Sunghoon Lim & Thanapon Noraset & Tipajin Thaipisutikul, 2021. "DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-32, December.
    20. Damien Challet & Ahmed Bel Hadj Ayed, 2014. "Do Google Trend data contain more predictability than price returns?," Papers 1403.1715, arXiv.org.
    21. Paolo Cremonesi & Chiara Francalanci & Alessandro Poli & Roberto Pagano & Luca Mazzoni & Alberto Maggioni & Mehdi Elahi, 2018. "Social Network based Short-Term Stock Trading System," Papers 1801.05295, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0139911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.