IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130700.html
   My bibliography  Save this article

Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib

Author

Listed:
  • Bin Li
  • Hyunjin Shin
  • Georgy Gulbekyan
  • Olga Pustovalova
  • Yuri Nikolsky
  • Andrew Hope
  • Marina Bessarabova
  • Matthew Schu
  • Elona Kolpakova-Hart
  • David Merberg
  • Andrew Dorner
  • William L Trepicchio

Abstract

Development of drug responsive biomarkers from pre-clinical data is a critical step in drug discovery, as it enables patient stratification in clinical trial design. Such translational biomarkers can be validated in early clinical trial phases and utilized as a patient inclusion parameter in later stage trials. Here we present a study on building accurate and selective drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by validation of individual models on corresponding treatment arms from patient data generated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based modeling framework was designed and implemented, using a special splitting strategy and canonical pathways to capture robust information for model building. Erlotinib and Sorafenib predictive models could be used to identify a sub-group of patients that respond better to the corresponding treatment, and these models are specific to the corresponding drugs. The model derived signature genes reflect each drug’s known mechanism of action. Also, the models predict each drug’s potential cancer indications consistent with clinical trial results from a selection of globally normalized GEO expression datasets.

Suggested Citation

  • Bin Li & Hyunjin Shin & Georgy Gulbekyan & Olga Pustovalova & Yuri Nikolsky & Andrew Hope & Marina Bessarabova & Matthew Schu & Elona Kolpakova-Hart & David Merberg & Andrew Dorner & William L Trepicc, 2015. "Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0130700
    DOI: 10.1371/journal.pone.0130700
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130700
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130700&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    2. Witten Daniela M & Tibshirani Robert J., 2009. "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
    2. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    3. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    5. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    6. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    7. Jasmit Shah & Somnath Datta & Susmita Datta, 2014. "A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics," Computational Statistics, Springer, vol. 29(6), pages 1749-1767, December.
    8. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    9. Kapetanios, George & Price, Simon & Young, Garry, 2018. "A UK financial conditions index using targeted data reduction: Forecasting and structural identification," Econometrics and Statistics, Elsevier, vol. 7(C), pages 1-17.
    10. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    11. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    12. Shin, Seung Jun & Artemiou, Andreas, 2017. "Penalized principal logistic regression for sparse sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 48-58.
    13. Yongshuai Chen & Baosheng Liang, 2025. "Sure Independence Screening for Ultrahigh-Dimensional Additive Model with Multivariate Response," Mathematics, MDPI, vol. 13(10), pages 1-17, May.
    14. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    15. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    16. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    17. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2019. "Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 715-733, November.
    18. Cui, Jingyu & Yi, Grace Y., 2024. "Variable selection in multivariate regression models with measurement error in covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    19. Luo, Ruiyan & Qi, Xin, 2017. "Signal extraction approach for sparse multivariate response regression," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 83-97.
    20. Jaturong Som-ard & Savittri Ratanopad Suwanlee & Dusadee Pinasu & Surasak Keawsomsee & Kemin Kasa & Nattawut Seesanhao & Sarawut Ninsawat & Enrico Borgogno-Mondino & Filippo Sarvia, 2024. "Evaluating Sugarcane Yield Estimation in Thailand Using Multi-Temporal Sentinel-2 and Landsat Data Together with Machine-Learning Algorithms," Land, MDPI, vol. 13(9), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.