IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0118207.html
   My bibliography  Save this article

Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building

Author

Listed:
  • Tiffanie Ramos
  • Sandra Dedesko
  • Jeffrey A Siegel
  • Jack A Gilbert
  • Brent Stephens

Abstract

The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO2 concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ∼8×106 data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.

Suggested Citation

  • Tiffanie Ramos & Sandra Dedesko & Jeffrey A Siegel & Jack A Gilbert & Brent Stephens, 2015. "Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0118207
    DOI: 10.1371/journal.pone.0118207
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118207
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118207&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0118207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khodakarami, Jamal & Nasrollahi, Nazanin, 2012. "Thermal comfort in hospitals – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4071-4077.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    2. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    3. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2014. "Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings," Energy, Elsevier, vol. 78(C), pages 555-572.
    4. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    5. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    7. Michał Piasecki & Małgorzata Fedorczak-Cisak & Marcin Furtak & Jacek Biskupski, 2019. "Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building," Sustainability, MDPI, vol. 11(9), pages 1-25, April.
    8. Neven, Louis & Walker, Gordon & Brown, Sam, 2015. "Sustainable thermal technologies and care homes: Productive alignment or risky investment?," Energy Policy, Elsevier, vol. 84(C), pages 195-203.
    9. Ajabli, Houda & Zoubir, Amine & Elotmani, Rabie & Louzazni, Mohamed & Kandoussi, Khalid & Daya, Abdelmajid, 2023. "Review on Eco-friendly insulation material used for indoor comfort in building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    11. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    12. Diana Enescu, 2019. "Models and Indicators to Assess Thermal Sensation Under Steady-State and Transient Conditions," Energies, MDPI, vol. 12(5), pages 1-43, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0118207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.