IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0111612.html
   My bibliography  Save this article

Functional Aspects of the EGF-Induced MAP Kinase Cascade: A Complex Self-Organizing System Approach

Author

Listed:
  • Efstratios K Kosmidis
  • Vasiliki Moschou
  • Georgios Ziogas
  • Ioannis Boukovinas
  • Maria Albani
  • Nikolaos A Laskaris

Abstract

The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is involved in the onset of a number of diseases. Based on a computational model describing a “surface” and an “internalized” parallel route, we use systems biology techniques to characterize aspects of the network’s functional organization. We examine the re-organization of protein groups from low to high external stimulation, define functional groups of proteins within the network, determine the parameter best encoding for input intensity and predict the effect of protein removal to the system’s output response. Extensive functional re-organization of proteins is observed in the lower end of stimulus concentrations. As we move to higher concentrations the variability is less pronounced. 6 functional groups have emerged from a consensus clustering approach, reflecting different dynamical aspects of the network. Mutual information investigation revealed that the maximum activation rate of the two output proteins best encodes for stimulus intensity. Removal of each protein of the network resulted in a range of graded effects, from complete silencing to intense activation. Our results provide a new “vista” of the EGF-induced MAP kinase cascade, from the perspective of complex self-organizing systems. Functional grouping of the proteins reveals an organizational scheme contrasting the current understanding of modular topology. The six identified groups may provide the means to experimentally follow the dynamics of this complex network. Also, the vulnerability analysis approach may be used for the development of novel therapeutic targets in the context of personalized medicine.

Suggested Citation

  • Efstratios K Kosmidis & Vasiliki Moschou & Georgios Ziogas & Ioannis Boukovinas & Maria Albani & Nikolaos A Laskaris, 2014. "Functional Aspects of the EGF-Induced MAP Kinase Cascade: A Complex Self-Organizing System Approach," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0111612
    DOI: 10.1371/journal.pone.0111612
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111612
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0111612&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0111612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meila, Marina, 2007. "Comparing clusterings--an information based distance," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 873-895, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Juan Lucio & Raúl Mínguez & Asier Minondo & Francisco Requena, 2016. "Networks and the Dynamics of Firms' Export Portfolio: Evidence for Mexico," The World Economy, Wiley Blackwell, vol. 39(5), pages 708-736, May.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    4. Damien A Fair & Alexander L Cohen & Jonathan D Power & Nico U F Dosenbach & Jessica A Church & Francis M Miezin & Bradley L Schlaggar & Steven E Petersen, 2009. "Functional Brain Networks Develop from a “Local to Distributed” Organization," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-14, May.
    5. Alessandro Chessa & Pierpaolo D’Urso & Livia Giovanni & Vincenzina Vitale & Alfonso Gebbia, 2023. "Complex networks for community detection of basketball players," Annals of Operations Research, Springer, vol. 325(1), pages 363-389, June.
    6. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    7. Luciana Crosilla & Marco Malgarini, 2011. "Behavioural models for manufacturing firms: analysing survey data," ECONOMIA E POLITICA INDUSTRIALE, FrancoAngeli Editore, vol. 2011(4), pages 139-163.
    8. Claudio Conversano & Massimo Cannas & Francesco Mola & Emiliano Sironi, 2019. "Random effects clustering in multilevel modeling: choosing a proper partition," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 279-301, March.
    9. Lou, Hao & Li, Shenghong & Zhao, Yuxin, 2013. "Detecting community structure using label propagation with weighted coherent neighborhood propinquity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3095-3105.
    10. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    11. Neave O'Clery & Samuel Heroy & Francois Hulot & Mariano Beguerisse-D'iaz, 2019. "Unravelling the forces underlying urban industrial agglomeration," Papers 1903.09279, arXiv.org, revised Jun 2019.
    12. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    13. Kemmawadee Preedalikit & Daniel Fernández & Ivy Liu & Louise McMillan & Marta Nai Ruscone & Roy Costilla, 2024. "Row mixture-based clustering with covariates for ordinal responses," Computational Statistics, Springer, vol. 39(5), pages 2511-2555, July.
    14. Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
    15. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    16. Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
    17. Zema, Sebastiano Michele, 2022. "Uncovering the network structure of non-centrally cleared derivative markets: evidences from regulatory data," Working Paper Series 2721, European Central Bank.
    18. Francisco J. Valverde-Albacete & Carmen Peláez-Moreno, 2024. "A Formalization of Multilabel Classification in Terms of Lattice Theory and Information Theory: Concerning Datasets," Mathematics, MDPI, vol. 12(2), pages 1-31, January.
    19. Ronaldo F. Zampolo & Frederico H. R. Lopes & Rodrigo M. S. de Oliveira & Martim F. Fernandes & Victor Dmitriev, 2024. "Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets," Energies, MDPI, vol. 17(23), pages 1-18, November.
    20. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0111612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.