IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037608.html
   My bibliography  Save this article

A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

Author

Listed:
  • Hua Yu
  • Jianxin Chen
  • Xue Xu
  • Yan Li
  • Huihui Zhao
  • Yupeng Fang
  • Xiuxiu Li
  • Wei Zhou
  • Wei Wang
  • Yonghua Wang

Abstract

In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes.

Suggested Citation

  • Hua Yu & Jianxin Chen & Xue Xu & Yan Li & Huihui Zhao & Yupeng Fang & Xiuxiu Li & Wei Zhou & Wei Wang & Yonghua Wang, 2012. "A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0037608
    DOI: 10.1371/journal.pone.0037608
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037608
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037608&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher Lipinski & Andrew Hopkins, 2004. "Navigating chemical space for biology and medicine," Nature, Nature, vol. 432(7019), pages 855-861, December.
    2. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    3. Finny G. Kuruvilla & Alykhan F. Shamji & Scott M. Sternson & Paul J. Hergenrother & Stuart L. Schreiber, 2002. "Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays," Nature, Nature, vol. 416(6881), pages 653-657, April.
    4. Christopher M. Dobson, 2004. "Chemical space and biology," Nature, Nature, vol. 432(7019), pages 824-828, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Chao Huang & Yang Yang & Xuetong Chen & Chao Wang & Yan Li & Chunli Zheng & Yonghua Wang, 2017. "Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.
    3. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    4. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    5. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    6. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    7. Gao, Jianbo & Hu, Jing, 2014. "Financial crisis, Omori's law, and negative entropy flow," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 79-86.
    8. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    9. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    10. Ansell, Christopher K. & Bartenberger, Martin, 2016. "Varieties of experimentalism," Ecological Economics, Elsevier, vol. 130(C), pages 64-73.
    11. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    12. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    13. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    14. Jianyuan Deng & Zhibo Yang & Hehe Wang & Iwao Ojima & Dimitris Samaras & Fusheng Wang, 2023. "A systematic study of key elements underlying molecular property prediction," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    16. Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
    17. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    18. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    19. Nadadoor Venkat R. & Ben-Zvi Amos & Shah Sirish L., 2011. "Inferring Gene Networks using Robust Statistical Techniques," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, May.
    20. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.