IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v365y2006i2p549-555.html
   My bibliography  Save this article

Weighted networks in immune system shape space

Author

Listed:
  • Ruskin, Heather J.
  • Burns, John

Abstract

In this paper we present a model of immune system development when subjected to repeated infection events. The emergence of a complex network in shape space is outlined, the edges of which are characterised by both direction and weight. Such a network model supports a more comprehensive classification of immune function than was previously available in that the efficacy of infection elimination is directly dependent on both connectivity and weight distributions. The network model which emerges possesses both small-world characteristics, as well as a truncated scale-free degree and weight distribution commonly observed in social network models.

Suggested Citation

  • Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
  • Handle: RePEc:eee:phsmap:v:365:y:2006:i:2:p:549-555
    DOI: 10.1016/j.physa.2005.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105011982
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hershberg, Uri & Louzoun, Yoram & Atlan, Henri & Solomon, Sorin, 2001. "HIV time hierarchy: winning the war while, loosing all the battles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 178-190.
    2. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Barthélemy, Marc & Barrat, Alain & Pastor-Satorras, Romualdo & Vespignani, Alessandro, 2005. "Characterization and modeling of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    2. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    3. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    4. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    5. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    6. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    7. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    8. Lawford, Steve & Mehmeti, Yll, 2020. "Cliques and a new measure of clustering: With application to U.S. domestic airlines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Wang, Huan & Xu, Chuan-Yun & Hu, Jing-Bo & Cao, Ke-Fei, 2014. "A complex network analysis of hypertension-related genes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 166-176.
    10. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    11. Ramon Ferrer i Cancho & Ricard V. Solé, 2001. "The Small-World of Human Language," Working Papers 01-03-016, Santa Fe Institute.
    12. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    13. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    14. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    15. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    16. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    17. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    18. Marr, Carsten & Hütt, Marc-Thorsten, 2005. "Topology regulates pattern formation capacity of binary cellular automata on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 641-662.
    19. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    20. Cemal Cagatay Bilgin & Shayoni Ray & Banu Baydil & William P Daley & Melinda Larsen & Bülent Yener, 2012. "Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-19, March.

    More about this item

    Keywords

    Shape space; Weighted network;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:365:y:2006:i:2:p:549-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.