IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0016833.html
   My bibliography  Save this article

Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform

Author

Listed:
  • Ramesh Ummanni
  • Frederike Mundt
  • Heike Pospisil
  • Simone Venz
  • Christian Scharf
  • Christine Barett
  • Maria Fälth
  • Jens Köllermann
  • Reinhard Walther
  • Thorsten Schlomm
  • Guido Sauter
  • Carsten Bokemeyer
  • Holger Sültmann
  • A Schuppert
  • Tim H Brümmendorf
  • Stefan Balabanov

Abstract

Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.

Suggested Citation

  • Ramesh Ummanni & Frederike Mundt & Heike Pospisil & Simone Venz & Christian Scharf & Christine Barett & Maria Fälth & Jens Köllermann & Reinhard Walther & Thorsten Schlomm & Guido Sauter & Carsten Bok, 2011. "Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-14, February.
  • Handle: RePEc:plo:pone00:0016833
    DOI: 10.1371/journal.pone.0016833
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016833
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0016833&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0016833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Balabanov & Thomas Wilhelm & Simone Venz & Gunhild Keller & Christian Scharf & Heike Pospisil & Melanie Braig & Christine Barett & Carsten Bokemeyer & Reinhard Walther & Tim H Brümmendorf & And, 2013. "Combination of a Proteomics Approach and Reengineering of Meso Scale Network Models for Prediction of Mode-of-Action for Tyrosine Kinase Inhibitors," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Jansen & Tanda Qi & Vito Latora & Grigoris D. Amoutzias & Daniela Delneri & Stephen G. Oliver & Giuseppe Nicosia, 2024. "Minimisation of metabolic networks defines a new functional class of genes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    5. repec:plo:pone00:0198222 is not listed on IDEAS
    6. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    7. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    8. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    9. Nadadoor Venkat R. & Ben-Zvi Amos & Shah Sirish L., 2011. "Inferring Gene Networks using Robust Statistical Techniques," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, May.
    10. repec:plo:pcbi00:1004574 is not listed on IDEAS
    11. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    12. repec:plo:pcbi00:0030118 is not listed on IDEAS
    13. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    14. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    15. Erica W. Carter & Orlene Guerra Peraza & Nian Wang, 2023. "The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. repec:plo:pone00:0001667 is not listed on IDEAS
    17. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Jiawei Luo & Yi Qi, 2015. "Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-27, June.
    19. Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
    20. Huang, Yihao & Peng, Weijun & Zheng, Muhua & Zhao, Ming & Zhao, Manrui & Zhang, Yicheng, 2025. "Finding important nodes via improved cycle ratio method," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    21. Jiang, Nan, 2014. "WDEM: Weighted dynamics and evolution models for energy-constrained wireless sensor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 323-331.
    22. Xu, Chunsui & Liu, Zengrong & Wang, Ruiqi, 2010. "How divergence mechanisms influence disassortative mixing property in biology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 643-650.
    23. Raghav, Tanu & Jalan, Sarika, 2022. "Random matrix analysis of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    24. Tracy Chih-Ting Koubkova-Yu & Jung-Chi Chao & Jun-Yi Leu, 2018. "Heterologous Hsp90 promotes phenotypic diversity through network evolution," PLOS Biology, Public Library of Science, vol. 16(11), pages 1-29, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0016833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.