IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0007455.html
   My bibliography  Save this article

The extent, nature, and pathogenic consequences of helminth polyparasitism in humans: A meta-analysis

Author

Listed:
  • Rose E Donohue
  • Zoë K Cross
  • Edwin Michael

Abstract

Background: Individual helminth infections are ubiquitous in the tropics; geographical overlaps in endemicity and epidemiological reports suggest areas endemic for multiple helminthiases are also burdened with high prevalences of intestinal protozoan infections, malaria, tuberculosis (TB), and human immunodeficiency virus (HIV). Despite this, pathogens tend to be studied in isolation, and there remains a need for a better understanding of the community ecology and health consequences of helminth polyparasitism to inform the design of effective parasite control programs. Methodology: We performed meta-analyses to (i) evaluate the commonality of polyparasitism for helminth-helminth, helminth-intestinal protozoa, helminth-malaria, helminth-TB, and helminth-HIV co-infections, (ii) assess the potential for interspecies interactions among helminth-helminth and helminth-intestinal protozoan infections, and (iii) determine the presence and magnitude of association between specific parasite pairs. Additionally, we conducted a review of reported health consequences of multiply-infected individuals compared to singly- or not multiply-infected individuals. Principal findings: We found that helminth-helminth and helminth-intestinal protozoan multiple infections were significantly more common than single infections, while individuals with malaria, TB, and HIV were more likely to be singly-infected with these infections than co-infected with at least one helminth. Most observed species density distributions significantly differed from the expected distributions, suggesting the potential presence of interspecies interactions. All significant associations between parasite pairs were positive in direction, irrespective of the combination of pathogens. Polyparasitized individuals largely exhibited lower hemoglobin levels and higher anemia prevalence, while the differences in growth-related variables were mostly statistically insignificant. Conclusions: Our findings confirm that helminth polyparasitism and co-infection with major diseases is common in the tropics. A multitude of factors acting at various hierarchical levels, such as interspecies interactions at the within-host infra-parasite community level and environmental variables at the higher host community level, could explain the observed positive associations between pathogens; there remains a need to develop new frameworks which can consider these multilevel factors to better understand the processes structuring parasite communities to accomplish their control. Author summary: Helminth infections are a highly prevalent global health problem. These parasitic worm infections occur in areas also burdened with intestinal protozoan infections, malaria, tuberculosis, and human immunodeficiency virus. While these pathogens tend to be studied in isolation, there remains a need to better understand the nature, extent, and health consequences of helminth polyparasitism and co-infection with major diseases. Here, we reviewed the literature and performed meta-analyses to evaluate the commonality of helminth polyparasitism and co-infection, the potential for interspecies interactions between parasites, the association between parasite pairs, and the health consequences among multiply-infected individuals. We confirmed that polyparasitism and co-infection with major diseases are common in the global South and found that multiply-infected individuals experienced worse health consequences when compared to singly or not-multiply infected individuals. Our analysis suggested the potential presence of interspecies interactions and we identified the existence of positive associations between parasite pairs. These findings support the call for integrating deworming into malaria, TB, and HIV treatment protocols and suggest there remains a need to improve our understanding of the factors influencing co-transmission to achieve sustainable parasite control.

Suggested Citation

  • Rose E Donohue & Zoë K Cross & Edwin Michael, 2019. "The extent, nature, and pathogenic consequences of helminth polyparasitism in humans: A meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(6), pages 1-41, June.
  • Handle: RePEc:plo:pntd00:0007455
    DOI: 10.1371/journal.pntd.0007455
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007455
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0007455&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0007455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles H King & Anne-Marie Bertino, 2008. "Asymmetries of Poverty: Why Global Burden of Disease Valuations Underestimate the Burden of Neglected Tropical Diseases," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 2(3), pages 1-10, March.
    2. Joanne Lello & Brian Boag & Andrew Fenton & Ian R. Stevenson & Peter J. Hudson, 2004. "Competition and mutualism among the gut helminths of a mammalian host," Nature, Nature, vol. 428(6985), pages 840-844, April.
    3. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    4. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    5. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    6. Tanja A J Houweling & Henrike E Karim-Kos & Margarete C Kulik & Wilma A Stolk & Juanita A Haagsma & Edeltraud J Lenk & Jan Hendrik Richardus & Sake J de Vlas, 2016. "Socioeconomic Inequalities in Neglected Tropical Diseases: A Systematic Review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    2. Mahesh Shumsher Rughooputh & Rui Zeng & Ying Yao, 2015. "Protein Diet Restriction Slows Chronic Kidney Disease Progression in Non-Diabetic and in Type 1 Diabetic Patients, but Not in Type 2 Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials ," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    3. Christopher Winchester & Kelsey E. Medeiros, 2023. "In Bounds but Out of the Box: A Meta-Analysis Clarifying the Effect of Ethicality on Creativity," Journal of Business Ethics, Springer, vol. 183(3), pages 713-743, March.
    4. Kelly R Moran & Sara Y Del Valle, 2016. "A Meta-Analysis of the Association between Gender and Protective Behaviors in Response to Respiratory Epidemics and Pandemics," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-25, October.
    5. Sandra Feijóo & Raquel Rodríguez-Fernández, 2021. "A Meta-Analytical Review of Gender-Based School Bullying in Spain," IJERPH, MDPI, vol. 18(23), pages 1-13, December.
    6. Xizheng Xu & Zhiqiang Liu & Shaoying Gong & Yunpeng Wu, 2022. "The Relationship between Empathy and Attachment in Children and Adolescents: Three-Level Meta-Analyses," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    7. Kathrin Wunsch & Janis Fiedler & Philip Bachert & Alexander Woll, 2021. "The Tridirectional Relationship among Physical Activity, Stress, and Academic Performance in University Students: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    8. Alan da Silveira Fleck & Margaux L. Sadoine & Stéphane Buteau & Eva Suarthana & Maximilien Debia & Audrey Smargiassi, 2021. "Environmental and Occupational Short-Term Exposure to Airborne Particles and FEV 1 and FVC in Healthy Adults: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    9. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    10. Claudia Menne-Lothmann & Wolfgang Viechtbauer & Petra Höhn & Zuzana Kasanova & Simone P Haller & Marjan Drukker & Jim van Os & Marieke Wichers & Jennifer Y F Lau, 2014. "How to Boost Positive Interpretations? A Meta-Analysis of the Effectiveness of Cognitive Bias Modification for Interpretation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-26, June.
    11. Wei-Cheng Chang & Chin Lin & Cho-Hao Lee & Tzu-Ling Sung & Tao-Hsin Tung & Jorn-Hon Liu, 2017. "Vitrectomy with or without internal limiting membrane peeling for idiopathic epiretinal membrane: A meta-analysis," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    12. Christopher Hansen & Holger Steinmetz & Jörn Block, 2022. "How to conduct a meta-analysis in eight steps: a practical guide," Management Review Quarterly, Springer, vol. 72(1), pages 1-19, February.
    13. Shaylea Badovinac & Jodi Martin & Camille Guérin-Marion & Monica O’Neill & Rebecca Pillai Riddell & Jean-François Bureau & Rebecca Spiegel, 2018. "Associations between mother-preschooler attachment and maternal depression symptoms: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-27, October.
    14. Fazel, Seena & Burghart, Matthias & Fanshawe, Thomas & Gil, Sharon Danielle & Monahan, John & Yu, Rongqin, 2022. "The predictive performance of criminal risk assessment tools used at sentencing: Systematic review of validation studies," Journal of Criminal Justice, Elsevier, vol. 81(C).
    15. Amro Qaddoura & Payam Yazdan-Ashoori & Conrad Kabali & Lehana Thabane & R Brian Haynes & Stuart J Connolly & Harriette Gillian Christine Van Spall, 2015. "Efficacy of Hospital at Home in Patients with Heart Failure: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-15, June.
    16. Boshra H. Namin & Torvald Øgaard & Jo Røislien, 2021. "Workplace Incivility and Turnover Intention in Organizations: A Meta-Analytic Review," IJERPH, MDPI, vol. 19(1), pages 1-19, December.
    17. Ruohuang Jiao & Wojtek Przepiorka & Vincent Buskens, 2022. "Moderators of reputation effects in peer-to-peer online markets: a meta-analytic model selection approach," Journal of Computational Social Science, Springer, vol. 5(1), pages 1041-1067, May.
    18. Pedro Silva Moreira & Pedro R Almeida & Hugo Leite-Almeida & Nuno Sousa & Patrício Costa, 2016. "Impact of Chronic Stress Protocols in Learning and Memory in Rodents: Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    19. Romain Cadario & Pierre Chandon, 2020. "Which Healthy Eating Nudges Work Best? A Meta-Analysis of Field Experiments," Marketing Science, INFORMS, vol. 39(3), pages 465-486, May.
    20. repec:cup:judgdm:v:17:y:2022:i:4:p:720-744 is not listed on IDEAS
    21. Helena Sustar & Miloš N. Mladenović & Moshe Givoni, 2020. "The Landscape of Envisioning and Speculative Design Methods for Sustainable Mobility Futures," Sustainability, MDPI, vol. 12(6), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0007455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.