IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010330.html
   My bibliography  Save this article

Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2

Author

Listed:
  • Jose M Jimenez-Guardeño
  • Ana Maria Ortega-Prieto
  • Borja Menendez Moreno
  • Thomas J A Maguire
  • Adam Richardson
  • Juan Ignacio Diaz-Hernandez
  • Javier Diez Perez
  • Mark Zuckerman
  • Albert Mercadal Playa
  • Carlos Cordero Deline
  • Michael H Malim
  • Rocio Teresa Martinez-Nunez

Abstract

The COVID-19 pandemic has accelerated the need to identify new antiviral therapeutics at pace, including through drug repurposing. We employed a Quadratic Unbounded Binary Optimization (QUBO) model, to search for compounds similar to Remdesivir, the first antiviral against SARS-CoV-2 approved for human use, using a quantum-inspired device. We modelled Remdesivir and compounds present in the DrugBank database as graphs, established the optimal parameters in our algorithm and resolved the Maximum Weighted Independent Set problem within the conflict graph generated. We also employed a traditional Tanimoto fingerprint model. The two methods yielded different lists of lead compounds, with some overlap. While GS-6620 was the top compound predicted by both models, the QUBO model predicted BMS-986094 as second best. The Tanimoto model predicted different forms of cobalamin, also known as vitamin B12. We then determined the half maximal inhibitory concentration (IC50) values in cell culture models of SARS-CoV-2 infection and assessed cytotoxicity. We also demonstrated efficacy against several variants including SARS-CoV-2 Strain England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). Lastly, we employed an in vitro polymerization assay to demonstrate that these compounds directly inhibit the RNA-dependent RNA polymerase (RdRP) of SARS-CoV-2. Together, our data reveal that our QUBO model performs accurate comparisons (BMS-986094) that differed from those predicted by Tanimoto (different forms of vitamin B12); all compounds inhibited replication of SARS-CoV-2 via direct action on RdRP, with both models being useful. While Tanimoto may be employed when performing relatively small comparisons, QUBO is also accurate and may be well suited for very complex problems where computational resources may limit the number and/or complexity of possible combinations to evaluate. Our quantum-inspired screening method can therefore be employed in future searches for novel pharmacologic inhibitors, thus providing an approach for accelerating drug deployment.Author summary: Drug repurposing has emerged as one key strategy in the rapid development of treatments against SARS-CoV-2 infection. Remdesivir (RDV) was the first antiviral approved for human use against SARS-CoV-2. We have employed a novel model which runs on a quantum-inspired device, and compared ours to a more traditional fingerprinting model, in search of compounds similar to RDV. Quantum or quantum-inspired computing allows for handling of complex information such as 3D structures which can increase accuracy, while having shorter execution times than those of regular computers. The two methods yielded different compounds, with some overlap. Our quantum-inspired model predicted BMS-986094 and the fingerprint model predicted different forms of cobalamin, also known as vitamin B12, as second-best candidates. We assessed the effect of different concentrations of BMS-986094 and vitamin B12 forms on SARS-CoV-2 infection in two different cell lines. BMS-986094 and vitamin B12 forms were effective at inhibiting replication of all variants of SARS-CoV-2 assessed, namely England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and 55 B.1.617.2 (Delta). Lastly, we demonstrated direct inhibition the viral RNA polymerase by all compounds in vitro. Our data demonstrate the effectiveness of our model, which performed similarly to the well-established Tanimoto fingerprinting in the case of RDV. QUBO may be employed in other disciplines, where local computational resources may not suffice, and quantum-inspired devices may be more appropriate when the modelling of complex structures may otherwise not be feasible.

Suggested Citation

  • Jose M Jimenez-Guardeño & Ana Maria Ortega-Prieto & Borja Menendez Moreno & Thomas J A Maguire & Adam Richardson & Juan Ignacio Diaz-Hernandez & Javier Diez Perez & Mark Zuckerman & Albert Mercadal Pl, 2022. "Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2," PLOS Computational Biology, Public Library of Science, vol. 18(7), pages 1-22, July.
  • Handle: RePEc:plo:pcbi00:1010330
    DOI: 10.1371/journal.pcbi.1010330
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010330
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010330&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    3. Seo Woo Hong & Pierre Miasnikof & Roy Kwon & Yuri Lawryshyn, 2021. "Market Graph Clustering via QUBO and Digital Annealing," JRFM, MDPI, vol. 14(1), pages 1-13, January.
    4. Chams, M. & Hertz, A. & de Werra, D., 1987. "Some experiments with simulated annealing for coloring graphs," European Journal of Operational Research, Elsevier, vol. 32(2), pages 260-266, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    2. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    3. Saul Amorim & Jean-Pierre Barthélemy & Celso Ribeiro, 1992. "Clustering and clique partitioning: Simulated annealing and tabu search approaches," Journal of Classification, Springer;The Classification Society, vol. 9(1), pages 17-41, January.
    4. Serigne Gueye & Philippe Michelon, 2005. "“Miniaturized” Linearizations for Quadratic 0/1 Problems," Annals of Operations Research, Springer, vol. 140(1), pages 235-261, November.
    5. Maria da Conceição Cunha, 1999. "On Solving Aquifer Management Problems with Simulated Annealing Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(3), pages 153-170, June.
    6. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    7. S Küçükpetek & F Polat & H Oğuztüzün, 2005. "Multilevel graph partitioning: an evolutionary approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 549-562, May.
    8. Nicolas Zufferey & Olivier Labarthe & David Schindl, 2012. "Heuristics for a project management problem with incompatibility and assignment costs," Computational Optimization and Applications, Springer, vol. 51(3), pages 1231-1252, April.
    9. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    10. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    11. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    12. Orlin, James & Sharma, Dushyant, 2003. "The Extended Neighborhood: Definition And Characterization," Working papers 4392-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    14. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    16. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    17. Herrán, Alberto & Manuel Colmenar, J. & Duarte, Abraham, 2021. "An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 893-907.
    18. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    19. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    20. Noureddine Bouhmala, 2019. "Combining simulated annealing with local search heuristic for MAX-SAT," Journal of Heuristics, Springer, vol. 25(1), pages 47-69, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.