IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010182.html
   My bibliography  Save this article

Tracking the contribution of inductive bias to individualised internal models

Author

Listed:
  • Balázs Török
  • David G Nagy
  • Mariann Kiss
  • Karolina Janacsek
  • Dezső Németh
  • Gergő Orbán

Abstract

Internal models capture the regularities of the environment and are central to understanding how humans adapt to environmental statistics. In general, the correct internal model is unknown to observers, instead they rely on an approximate model that is continually adapted throughout learning. However, experimenters assume an ideal observer model, which captures stimulus structure but ignores the diverging hypotheses that humans form during learning. We combine non-parametric Bayesian methods and probabilistic programming to infer rich and dynamic individualised internal models from response times. We demonstrate that the approach is capable of characterizing the discrepancy between the internal model maintained by individuals and the ideal observer model and to track the evolution of the contribution of the ideal observer model to the internal model throughout training. In particular, in an implicit visuomotor sequence learning task the identified discrepancy revealed an inductive bias that was consistent across individuals but varied in strength and persistence.Author summary: Instead of mapping stimuli directly to response, humans and other complex organisms are thought to maintain internal models of the environment. These internal models represent parts of the environment that are most relevant for deciding how to act in a given situation and therefore are key to explaining human behaviour. In behavioural experiments it is often assumed that the internal model in the subject’s brain matches the true model that governs the experiment. However this assumption can be violated due to a variety of reasons, such as insufficient training. Furthermore, the deviation of the internal model from the true model is not uniform across individuals, and therefore it summarizes the subjective beliefs of humans. In this paper, we provide a method to reverse engineer the internal model for individual subjects by analysing trial by trial behavioural measurements such as reaction times. We then track and analyse these reverse engineered models over the course of the experiment to see how participants trade off between an early inductive bias towards Markovian dynamics and the model that reflects the evidence that humans accumulate during learning about the actual statistics of the stimuli.

Suggested Citation

  • Balázs Török & David G Nagy & Mariann Kiss & Karolina Janacsek & Dezső Németh & Gergő Orbán, 2022. "Tracking the contribution of inductive bias to individualised internal models," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-35, June.
  • Handle: RePEc:plo:pcbi00:1010182
    DOI: 10.1371/journal.pcbi.1010182
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010182
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010182&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingyu Song & Zahy Bnaya & Wei Ji Ma, 2019. "Publisher Correction: Sources of suboptimality in a minimalistic explore–exploit task," Nature Human Behaviour, Nature, vol. 3(4), pages 407-408, April.
    2. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    3. Mingyu Song & Zahy Bnaya & Wei Ji Ma, 2019. "Sources of suboptimality in a minimalistic explore–exploit task," Nature Human Behaviour, Nature, vol. 3(4), pages 361-368, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Billinger & Kannan Srikanth & Nils Stieglitz & Terry R. Schumacher, 2021. "Exploration and exploitation in complex search tasks: How feedback influences whether and where human agents search," Strategic Management Journal, Wiley Blackwell, vol. 42(2), pages 361-385, February.
    2. Gal Atlan & Noa Matosevich & Noa Peretz-Rivlin & Idit Marsh-Yvgi & Noam Zelinger & Eden Chen & Timna Kleinman & Noa Bleistein & Efrat Sheinbach & Maya Groysman & Yuval Nir & Ami Citri, 2024. "Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Nanyue Jiang & Chonghui Zhang & Weihua Su & Huanhuan Jin & Tomas Balezentis, 2024. "Towards carbon‐neutral society: Reconciling peak carbon strategy and thermal power generation via regional eco‐efficiency analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 2944-2961, August.
    4. Farid Anvari & Stephan Billinger & Pantelis P. Analytis & Vithor Rosa Franco & Davide Marchiori, 2024. "Testing the convergent validity, domain generality, and temporal stability of selected measures of people’s tendency to explore," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    8. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    9. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    10. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    11. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    12. Shu-Ping Shi & Yong Song, 2012. "Identifying Speculative Bubbles with an Infinite Hidden Markov Model," Working Paper series 26_12, Rimini Centre for Economic Analysis.
    13. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    14. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    15. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    16. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Gustaf Bellstam & Sanjai Bhagat & J. Anthony Cookson, 2021. "A Text-Based Analysis of Corporate Innovation," Management Science, INFORMS, vol. 67(7), pages 4004-4031, July.
    18. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    19. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    20. Hassan Akell & Farkhondeh-Alsadat Sajadi & Iraj Kazemi, 2023. "Construction of Jointly Distributed Random Samples Drawn from the Beta Two-Parameter Process," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.