IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007074.html
   My bibliography  Save this article

Perturbing low dimensional activity manifolds in spiking neuronal networks

Author

Listed:
  • Emil Wärnberg
  • Arvind Kumar

Abstract

Several recent studies have shown that neural activity in vivo tends to be constrained to a low-dimensional manifold. Such activity does not arise in simulated neural networks with homogeneous connectivity and it has been suggested that it is indicative of some other connectivity pattern in neuronal networks. In particular, this connectivity pattern appears to be constraining learning so that only neural activity patterns falling within the intrinsic manifold can be learned and elicited. Here, we use three different models of spiking neural networks (echo-state networks, the Neural Engineering Framework and Efficient Coding) to demonstrate how the intrinsic manifold can be made a direct consequence of the circuit connectivity. Using this relationship between the circuit connectivity and the intrinsic manifold, we show that learning of patterns outside the intrinsic manifold corresponds to much larger changes in synaptic weights than learning of patterns within the intrinsic manifold. Assuming larger changes to synaptic weights requires extensive learning, this observation provides an explanation of why learning is easier when it does not require the neural activity to leave its intrinsic manifold.Author summary: A network in the brain consists of thousands of neurons. A priori, we expect that the network will have as many degrees of freedom as its number of neurons. Surprisingly, experimental evidence suggests that local brain activity is confined to a subspace spanned by ~10 variables. Here, we employ three established approaches to construct spiking neuronal networks that exhibit low-dimensional activity. Using these models we address a specific experimental observation, namely that monkeys easily can elicit any activity within the subspace but have trouble with any activity outside. Specifically, we show that tasks that requires animals to change the network activity outside the subspace would entail large changes in the neuronal connectivity, and therefore, animals are either slow or not able to acquire such tasks.

Suggested Citation

  • Emil Wärnberg & Arvind Kumar, 2019. "Perturbing low dimensional activity manifolds in spiking neuronal networks," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-23, May.
  • Handle: RePEc:plo:pcbi00:1007074
    DOI: 10.1371/journal.pcbi.1007074
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007074
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007074&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    2. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    3. Martin Boerlin & Christian K Machens & Sophie Denève, 2013. "Predictive Coding of Dynamical Variables in Balanced Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    3. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    5. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    6. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    7. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    9. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    10. Hao Guo & Shenbing Kuang & Alexander Gail, 2025. "Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    12. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    13. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    14. Seong-Hwan Hwang & Doyoung Park & Ji-Woo Lee & Sue-Hyun Lee & Hyoung F. Kim, 2024. "Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Joseph Y. Nashed & Daniel J. Gale & Jason P. Gallivan & Douglas J. Cook, 2024. "Changes in cortical manifold structure following stroke and its relation to behavioral recovery in the male macaque," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Dalton D. Moore & Jason N. MacLean & Jeffrey D. Walker & Nicholas G. Hatsopoulos, 2024. "A dynamic subset of network interactions underlies tuning to natural movements in marmoset sensorimotor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Katarzyna Jurewicz & Brianna J. Sleezer & Priyanka S. Mehta & Benjamin Y. Hayden & R. Becket Ebitz, 2024. "Irrational choices via a curvilinear representational geometry for value," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu_v1, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.