The structured ‘low temperature’ phase of the retinal population code
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1005792
Download full text from publisher
References listed on IDEAS
- Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
- Stelios M. Smirnakis & Michael J. Berry & David K. Warland & William Bialek & Markus Meister, 1997. "Adaptation of retinal processing to image contrast and spatial scale," Nature, Nature, vol. 386(6620), pages 69-73, March.
- Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
- Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
- Laurence Aitchison & Nicola Corradi & Peter E Latham, 2016. "Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-32, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
- Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
- Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
- Patrick Erik Bradley & Martin Behnisch, 2019. "Heavy-tailed distributions for building stock data," Environment and Planning B, , vol. 46(7), pages 1281-1296, September.
- Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
- MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
- Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.
- Joanna Bryson, 2008. "Embodiment versus memetics," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 7(1), pages 77-94, June.
- Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
- Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
- Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
- Zhang, Qi & Deng, Ronghao & Ding, Kaixing & Li, Meizhu, 2024. "Structural analysis and the sum of nodes’ betweenness centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
- Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
- Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
- Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
- Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
- Sahar Gelfman & Quanli Wang & Yi-Fan Lu & Diana Hall & Christopher D Bostick & Ryan Dhindsa & Matt Halvorsen & K Melodi McSweeney & Ellese Cotterill & Tom Edinburgh & Michael A Beaumont & Wayne N Fran, 2018. "meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-20, October.
- Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.
- Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005792. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.