IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001058.html
   My bibliography  Save this article

Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions

Author

Listed:
  • John E Pearson
  • Paul Krapivsky
  • Alan S Perelson

Abstract

Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production.Author Summary: The dynamics of HIV infection and treatment has been extensively studied using ordinary differential equation models. Recent work on HIV transmission has suggested that most sexually transmitted infections are started by a single virus or infected cell. This observation coupled with the fact that successful HIV transmission only occurs in 1 per 100 to 1 per 1000 coital acts suggests that early events in infection are stochastic. Here we develop a stochastic model of HIV infection and use it to characterize the dynamics of early infection when virus is released from cells either continuously or in a burst. We show that these mechanisms of viral production produce different early dynamics, with different probabilities of extinction and different distributions of time to establish infection. In deterministic models, these modes of viral production are indistinguishable.

Suggested Citation

  • John E Pearson & Paul Krapivsky & Alan S Perelson, 2011. "Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-17, February.
  • Handle: RePEc:plo:pcbi00:1001058
    DOI: 10.1371/journal.pcbi.1001058
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001058
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001058&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.