IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000208.html
   My bibliography  Save this article

The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation

Author

Listed:
  • David M Santucci
  • Sridhar Raghavachari

Abstract

N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function.Author Summary: Information processing in the brain is carried out by networks of neurons connected by synapses. Synapses can change strength, allowing these networks to adapt and learn, in a process known as synaptic plasticity. At a synapse, an electrical signal in one neuron is converted into a chemical signal, carried by a neurotransmitter, which is in turn converted into electrical and chemical signals in another neuron by specialized proteins called receptors. One such protein, the N-methyl-d-aspartic acid (NMDA) receptor, is particularly important for plasticity, due to its ability to detect the voltage of the cell receiving the neurotransmitter signal and to the fact that it allows calcium, an important signaling molecule, to enter the cell. Here we use computational modeling to investigate the role of one part of the NMDA receptor: the NR2 subunit. The subunit has various forms, and which of these forms are present in the NMDA receptor can strongly affect the kinetics and other properties of the receptor. We show that, along with changing the kinetics of the receptor, changing the NR2 subunit affects the reliability of the receptor, its ability to respond to large stimuli, and its spatial response properties. These results have implications for synaptic transmission and plasticity.

Suggested Citation

  • David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
  • Handle: RePEc:plo:pcbi00:1000208
    DOI: 10.1371/journal.pcbi.1000208
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000208
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000208&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masanori Matsuzaki & Naoki Honkura & Graham C. R. Ellis-Davies & Haruo Kasai, 2004. "Structural basis of long-term potentiation in single dendritic spines," Nature, Nature, vol. 429(6993), pages 761-766, June.
    2. Yu Sun & Rich Olson & Michelle Horning & Neali Armstrong & Mark Mayer & Eric Gouaux, 2002. "Mechanism of glutamate receptor desensitization," Nature, Nature, vol. 417(6886), pages 245-253, May.
    3. Zachary F. Mainen & Roberto Malinow & Karel Svoboda, 1999. "Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated," Nature, Nature, vol. 399(6732), pages 151-155, May.
    4. Jackie Schiller & Guy Major & Helmut J. Koester & Yitzhak Schiller, 2000. "NMDA spikes in basal dendrites of cortical pyramidal neurons," Nature, Nature, vol. 404(6775), pages 285-289, March.
    5. Ya-Ping Tang & Eiji Shimizu & Gilles R. Dube & Claire Rampon & Geoffrey A. Kerchner & Min Zhuo & Guosong Liu & Joe Z. Tsien, 1999. "Genetic enhancement of learning and memory in mice," Nature, Nature, vol. 401(6748), pages 63-69, September.
    6. Gabriela Popescu & Antoine Robert & James R. Howe & Anthony Auerbach, 2004. "Reaction mechanism determines NMDA receptor response to repetitive stimulation," Nature, Nature, vol. 430(7001), pages 790-793, August.
    7. Pascale Chavis & Gary Westbrook, 2001. "Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse," Nature, Nature, vol. 411(6835), pages 317-321, May.
    8. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    2. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    3. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    4. Guizhen Fan & Mariah R. Baker & Lara E. Terry & Vikas Arige & Muyuan Chen & Alexander B. Seryshev & Matthew L. Baker & Steven J. Ludtke & David I. Yule & Irina I. Serysheva, 2022. "Conformational motions and ligand-binding underlying gating and regulation in IP3R channel," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. María del Carmen Rodríguez-Martínez & Alba De la Plana Maestre & Juan Antonio Armenta-Peinado & Miguel Ángel Barbancho & Natalia García-Casares, 2021. "Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    6. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    7. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    8. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Isabel Espadas & Jenna L. Wingfield & Yoshihisa Nakahata & Kaushik Chanda & Eddie Grinman & Ilika Ghosh & Karl E. Bauer & Bindu Raveendra & Michael A. Kiebler & Ryohei Yasuda & Vidhya Rangaraju & Sath, 2024. "Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    10. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    11. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    12. Karpinski, Ruth I. & Kinase Kolb, Audrey M. & Tetreault, Nicole A. & Borowski, Thomas B., 2018. "High intelligence: A risk factor for psychological and physiological overexcitabilities," Intelligence, Elsevier, vol. 66(C), pages 8-23.
    13. Roberto Ogelman & Luis E. Gomez Wulschner & Victoria M. Hoelscher & In-Wook Hwang & Victoria N. Chang & Won Chan Oh, 2024. "Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Céline D. Dürst & J. Simon Wiegert & Christian Schulze & Nordine Helassa & Katalin Török & Thomas G. Oertner, 2022. "Vesicular release probability sets the strength of individual Schaffer collateral synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Ojasee Bapat & Tejas Purimetla & Sarah Kruessel & Monil Shah & Ruolin Fan & Christina Thum & Fiona Rupprecht & Julian D. Langer & Vidhya Rangaraju, 2024. "VAP spatially stabilizes dendritic mitochondria to locally support synaptic plasticity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Vardi, Roni & Tugendhaft, Yael & Kanter, Ido, 2023. "Neuronal plasticity features are independent of neuronal holding membrane potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    18. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    19. Daria Antonenko & Anna Elisabeth Fromm & Friederike Thams & Ulrike Grittner & Marcus Meinzer & Agnes Flöel, 2023. "Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Etay Hay & Sean Hill & Felix Schürmann & Henry Markram & Idan Segev, 2011. "Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.