IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/0030107.html
   My bibliography  Save this article

The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover

Author

Listed:
  • Paul Miller
  • Anatol M Zhabotinsky
  • John E Lisman
  • Xiao-Jing Wang

Abstract

Molecular switches have been implicated in the storage of information in biological systems. For small structures such as synapses, these switches are composed of only a few molecules and stochastic fluctuations are therefore of importance. Such fluctuations could potentially lead to spontaneous switch reset that would limit the lifetime of information storage. We have analyzed a model of the calcium/calmodulin-dependent protein kinase II (CaMKII) switch implicated in long-term memory in the nervous system. The bistability of this switch arises from autocatalytic autophosphorylation of CaMKII, a reaction that is countered by a saturable phosphatase-1-mediated dephosphorylation. We sought to understand the factors that control switch stability and to determine the functional relationship between stability and the number of molecules involved. Using Monte Carlo simulations, we found that the lifetime of states of the switch increase exponentially with the number of CaMKII holoenzymes. Switch stability requires a balance between the kinase and phosphatase rates, and the kinase rate must remain high relative to the rate of protein turnover. Thus, a critical limit on switch stability is set by the observed turnover rate (one per 30 h on average). Our computational results show that, depending on the timescale of fluctuations in enzyme numbers, for a switch composed of about 15 CaMKII holoenzymes, the stable persistent activation can span from a few years to a human lifetime. Computational modeling indicates that autophosphorylation of CaMKII can create stable persistent activation lasting several years.

Suggested Citation

  • Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
  • Handle: RePEc:plo:pbio00:0030107
    DOI: 10.1371/journal.pbio.0030107
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030107
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0030107&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.0030107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K.-Ulrich Bayer & Paul De Koninck & A. Soren Leonard & Johannes W. Hell & Howard Schulman, 2001. "Interaction with the NMDA receptor locks CaMKII in an active conformation," Nature, Nature, vol. 411(6839), pages 801-805, June.
    2. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    2. Hiromu Takizawa & Noriko Hiroi & Akira Funahashi, 2012. "Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-22, December.
    3. David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
    4. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    5. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    2. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    3. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    4. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    5. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    6. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    7. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    8. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    9. Tuan A. Nguyen & Henry L. Puhl & Kirk Hines & Daniel J. Liput & Steven S. Vogel, 2022. "Binary-FRET reveals transient excited-state structure associated with activity-dependent CaMKII - NR2B binding and adaptation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    12. Navneet Rai & Rajat Anand & Krishna Ramkumar & Varun Sreenivasan & Sugat Dabholkar & K V Venkatesh & Mukund Thattai, 2012. "Prediction by Promoter Logic in Bacterial Quorum Sensing," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    13. Li, Chunbiao & Sprott, Julien Clinton & Kapitaniak, Tomasz & Lu, Tianai, 2018. "Infinite lattice of hyperchaotic strange attractors," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 76-82.
    14. Marco Montalva-Medel & Thomas Ledger & Gonzalo A. Ruz & Eric Goles, 2021. "Lac Operon Boolean Models: Dynamical Robustness and Alternative Improvements," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    15. Xiu-Deng Zheng & Xiao-Qian Yang & Yi Tao, 2011. "Bistability, Probability Transition Rate and First-Passage Time in an Autoactivating Positive-Feedback Loop," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-10, March.
    16. Ermelinda Porpiglia & Daniel Hidalgo & Miroslav Koulnis & Abraham R Tzafriri & Merav Socolovsky, 2012. "Stat5 Signaling Specifies Basal versus Stress Erythropoietic Responses through Distinct Binary and Graded Dynamic Modalities," PLOS Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    17. Hao Ge & Pingping Wu & Hong Qian & Xiaoliang Sunney Xie, 2018. "Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-24, March.
    18. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    19. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.
    20. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:0030107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.