IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010970.html
   My bibliography  Save this article

Topological descriptors of the parameter region of multistationarity: Deciding upon connectivity

Author

Listed:
  • Máté László Telek
  • Elisenda Feliu

Abstract

Switch-like responses arising from bistability have been linked to cell signaling processes and memory. Revealing the shape and properties of the set of parameters that lead to bistability is necessary to understand the underlying biological mechanisms, but is a complex mathematical problem. We present an efficient approach to address a basic topological property of the parameter region of multistationary, namely whether it is connected. The connectivity of this region can be interpreted in terms of the biological mechanisms underlying bistability and the switch-like patterns that the system can create. We provide an algorithm to assert that the parameter region of multistationarity is connected, targeting reaction networks with mass-action kinetics. We show that this is the case for numerous relevant cell signaling motifs, previously described to exhibit bistability. The method relies on linear programming and bypasses the expensive computational cost of direct and generic approaches to study parametric polynomial systems. This characteristic makes it suitable for mass-screening of reaction networks. Although the algorithm can only be used to certify connectivity, we illustrate that the ideas behind the algorithm can be adapted on a case-by-case basis to also decide that the region is not connected. In particular, we show that for a motif displaying a phosphorylation cycle with allosteric enzyme regulation, the region of multistationarity has two distinct connected components, corresponding to two different, but symmetric, biological mechanisms.Author summary: This work addresses the challenging problem of studying the set of parameters for which a system of ordinary differential equations has more than one steady state, a property termed multistationarity. In particular, we are interested in systems arising from the study of biochemical networks. The shape of the multistationarity region is linked to different types of switches that the network can display. We provide an algorithm to decide whether this set is path connected, meaning that any two points in the set are joined by a path completely contained in the set. We illustrate the algorithm with numerous relevant networks, for which we can conclude that the parameter region is path connected.

Suggested Citation

  • Máté László Telek & Elisenda Feliu, 2023. "Topological descriptors of the parameter region of multistationarity: Deciding upon connectivity," PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-38, March.
  • Handle: RePEc:plo:pcbi00:1010970
    DOI: 10.1371/journal.pcbi.1010970
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010970
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010970&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew Thomson & Jeremy Gunawardena, 2009. "Unlimited multistability in multisite phosphorylation systems," Nature, Nature, vol. 460(7252), pages 274-277, July.
    2. repec:plo:pcbi00:1005751 is not listed on IDEAS
    3. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunbiao & Sprott, Julien Clinton & Kapitaniak, Tomasz & Lu, Tianai, 2018. "Infinite lattice of hyperchaotic strange attractors," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 76-82.
    2. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    3. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    4. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    5. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    6. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    7. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    8. repec:plo:pone00:0236519 is not listed on IDEAS
    9. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    10. Carlo Chan & Xinfeng Liu & Liming Wang & Lee Bardwell & Qing Nie & Germán Enciso, 2012. "Protein Scaffolds Can Enhance the Bistability of Multisite Phosphorylation Systems," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-9, June.
    11. Löb, Daniel & Priester, Christopher & Drossel, Barbara, 2016. "Multistability and sustained oscillations in a model for protein complex formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 85-101.
    12. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    13. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    14. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    16. Navneet Rai & Rajat Anand & Krishna Ramkumar & Varun Sreenivasan & Sugat Dabholkar & K V Venkatesh & Mukund Thattai, 2012. "Prediction by Promoter Logic in Bacterial Quorum Sensing," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    17. repec:plo:pone00:0010823 is not listed on IDEAS
    18. Marco Montalva-Medel & Thomas Ledger & Gonzalo A. Ruz & Eric Goles, 2021. "Lac Operon Boolean Models: Dynamical Robustness and Alternative Improvements," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    19. Xiu-Deng Zheng & Xiao-Qian Yang & Yi Tao, 2011. "Bistability, Probability Transition Rate and First-Passage Time in an Autoactivating Positive-Feedback Loop," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-10, March.
    20. Ermelinda Porpiglia & Daniel Hidalgo & Miroslav Koulnis & Abraham R Tzafriri & Merav Socolovsky, 2012. "Stat5 Signaling Specifies Basal versus Stress Erythropoietic Responses through Distinct Binary and Graded Dynamic Modalities," PLOS Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    21. Andreas Petrides & Glenn Vinnicombe, 2018. "Enzyme sequestration by the substrate: An analysis in the deterministic and stochastic domains," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-23, May.
    22. Hao Ge & Pingping Wu & Hong Qian & Xiaoliang Sunney Xie, 2018. "Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.