Author
Listed:
- Martin Hofmann
(Technische Universität Ilmenau)
- Moritz Franz Peter Becker
(University Medical Center Göttingen)
- Christian Tetzlaff
(University Medical Center Göttingen
University of Göttingen)
- Patrick Mäder
(Technische Universität Ilmenau
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Friedrich Schiller University)
Abstract
Recent developments in artificial neural networks have drawn inspiration from biological neural networks, leveraging the concept of the artificial neuron to model the learning abilities of biological nerve cells. However, while neuroscience has provided new insights into the mechanisms of biological neural networks, only a limited number of these concepts have been directly applied to artificial neural networks, with no guarantee of improved performance. Here, we address the discrepancy between the inhomogeneous and dynamic structures of biological neural networks and the largely homogeneous and fixed topologies of artificial neural networks. Specifically, we demonstrate successful integration of concepts of synaptic diversity, including spontaneous spine remodeling, synaptic plasticity diversity, and multi-synaptic connectivity, into artificial neural networks. Our findings reveal increased learning speed, prediction accuracy, and resilience to gradient inversion attacks. Our publicly available drop-in replacement code enables easy incorporation of these proposed concepts into existing networks.
Suggested Citation
Martin Hofmann & Moritz Franz Peter Becker & Christian Tetzlaff & Patrick Mäder, 2025.
"Concept transfer of synaptic diversity from biological to artificial neural networks,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60078-9
DOI: 10.1038/s41467-025-60078-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60078-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.