IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004551.html
   My bibliography  Save this article

Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network

Author

Listed:
  • Li, Tianyu
  • Wu, Yong
  • Yang, Lijian
  • Fu, Ziying
  • Jia, Ya

Abstract

The propagation and detection of weak signals play a vital role in the central nervous system's information processing. In this paper, a biophysical two-compartment model is adopted to investigate how the neuronal morphology and network properties modulate signal propagation in a multi-layer feedforward network (FFN). The numerical simulation results show that neurons with larger dendrites have higher firing rates and better responses to weak signals. Similarly, the output layer of FFN constructed by larger-dendrite neurons also exhibits better responses. A suitable chaotic current is necessary for the propagation of weak signals. Excessively strong or weak chaotic current leads to propagation failure. Sparse connection and weak synaptic strength optimize the responses of the output layer, which is consistent with real biological networks observed in the brain. It is found that weak signal propagation in FFN is highly correlated with the regulation of firing rate. Our results may provide novel insights into the modeling of complex networks and network function implementation.

Suggested Citation

  • Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004551
    DOI: 10.1016/j.chaos.2023.113554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    4. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    5. Palabas, Tugba & Torres, Joaquín J. & Perc, Matjaž & Uzuntarla, Muhammet, 2023. "Double stochastic resonance in neuronal dynamics due to astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Zachary F. Mainen & Roberto Malinow & Karel Svoboda, 1999. "Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated," Nature, Nature, vol. 399(6732), pages 151-155, May.
    7. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Ouyang, Zhicheng & Yu, Yangyang & Liu, Zhilong & Feng, PeiHua, 2023. "Transition of spatiotemporal patterns in neuron–astrocyte networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Lulu Lu & Ya Jia & Wangheng Liu & Lijian Yang, 2017. "Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    10. David J. Herzfeld & Yoshiko Kojima & Robijanto Soetedjo & Reza Shadmehr, 2015. "Encoding of action by the Purkinje cells of the cerebellum," Nature, Nature, vol. 526(7573), pages 439-442, October.
    11. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    10. Baysal, Veli & Solmaz, Ramazan & Ma, Jun, 2023. "Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    11. Cambraia, E.B.S.A. & Flauzino, J.V.V. & Prado, T.L. & Lopes, S.R., 2023. "Dependence on the local dynamics of a network phase synchronization process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Yao, Chenggui & Yao, Yuangen & Qian, Yu & Xu, Xufan, 2022. "Temperature-controlled propagation of spikes in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Calim, Ali & Baysal, Veli, 2023. "Chaotic resonance in an astrocyte-coupled excitable neuron," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. François G. C. Blot & Joshua J. White & Amy van Hattem & Licia Scotti & Vaishnavi Balaji & Youri Adolfs & R. Jeroen Pasterkamp & Chris I. De Zeeuw & Martijn Schonewille, 2023. "Purkinje cell microzones mediate distinct kinematics of a single movement," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.